
AD-A214 043

BM/C 3 TECHNOLOGY (MULTI-GRAIN)
FINAL REPORT

nT!,T, FII F rM"

"DTIC
ENT 0Of I ELECTE W"MM&

-- .nr r00ii T

29 SEPTEMBER 1989

STRATEGIC DEFENSE INITIATIVE ORGANIZATION
Office Of The Secretary Of Defense

Washington, DC 20301-7100.

Approvad for public reoegW
biwbaUtou UnixzWi

TTNCLARTFTED * C
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB o 00-o01

Is. REPORT SECURITY CLASSIFICATION 1. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for Public Release
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION
The Analytic Sciences (If applicable)
Corporation (Prime Contractor) Strategic Defense Initiative Organization

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
1700 N. Moore Street Room 1E149
Suite 1800 The Pentagon
Arlington, VA 22209 Washington, D.C. 20301-7100

Ba. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic (If applicable)

Defense Initiative Organization
&c. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Room 1E149 PROGRAM PROJECT TASK WORK UNIT
The Pentagon ELEMENT NO. NO. NO ACCESSION NO.
Washington, D.C. 2030i-7100

11. TITLE (Include Security Classification)

BM/C3 Technology (Multi-Grain) Final Report (U)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Technical FROM 13Feb89 TO a5Se8 1989, September, 29 1 7
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP SDS"'BATTLE MANAGEMENT, COMMAND/iCONTROL AND COMMUNICATIONS,

PARALLEL PROCESSORS TECHNOLOGY, BM/C3 ALGORITHMS,'PROCESSOR
SIZING, AUTOMATED SIZING TOOLS,

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report presents a method to assess, reliably and rapidly, the performance of parallel
(multi-grain) processing architectures for SDS BM/C3 requirements. The existing tools and
approaches for making such estimates are either "'ack-of-the-envelope" approach, or a
high fidelity event driven simulations. The processor sizing software tool PERM (Processor
Ensemble Runtime Model) developed in this contract is intended to fill the gap between the
extremes of very low fidelity and very high fidelity models. PERM explicitly models con-
current use of shared resources (memory, bus bandwidth, etc.) in a deterministic fashion and
it provides a natural, menu-driven user interface for Le construction of date structures
and display of results. The methods in algorithm-to-hardware architecture mapping for
parallel processing were demonstrated by mapping the AOA tracking algorithm on to the AOSP
hardware as a testcase.

(Continued on reverse side)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
El UNCLASSIFIED',MKa= 0 SAME AS RPT. f DTIC USERS UNCLASSIFIED

22a, NAME OF RESPONSIBLE INDIVID L 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
CPT Stephen L. Johnson (202) 693-_I400_ -qnl

DD Form 1473, JUN 86 reviuseditio r4soete. i L SECURITY CLASSIFICATION OF THIS PAGE8 .L V A0 ,b UNCLASSIFIED

19. (Continued)

Section 1 provides the System Description for PERM. Section 2 is the PERN User's Guide.
Section 3 presents the testcase. The performance data generated by PERN was analyzed. A
discussion is also provided of the experience using PERM both strengths and weaknesses.

I
I
I
I
I
I

FOREWORD

This technical report was prepared by SPARTA, Inc., Teledyne Brown
Engineering, and The Analytic Sciences Corporation (TASC), for SDIO, as
specified by Task Order 14, Data Item Instructions, Sequence Number A250,
Contract Number SDIO 84-88-C-0018. The comments are welcome. Please
send comments electronically to johnsons@jedi.sdio.mil or by mail to CPT
Stephen L. Johnson, SDIO/ENA, The Pentagon, Room IE149, Washington,
D.C. 20301-7100.

I

Acoess1ic For

INTIS STRA&I

> "Jun.t: f'ca. Ion

I _Distr'ibut toD/

Av'labi11ity Codes

iAv-tU1 et3(ijor

i I~v I t4o

ii/L

I
I

TABLE OF CONTENTS

Page

IFOREWORD ii

LIST OF FIGURES v

EXECUTIVE SUMMARY ES-1

I INTRODUCTION 0-1

1. SYSTEM DESCRIPTION 1-1
1.1 Overview of the PERM Software Design 1-1

1. 1. 1 IPERM 1-2
1.1.2 CPERM 1-3
1.1.3 DPERM 1-4

1.2 Modeling a Processor Ensemble in PERM 1-4
1.2.1 Basic Concepts and Terminology 1-4
1.2.2 Classes and Instantiations 1-6
1.2.3 Example of a Processor Ensemble 1-7

1.3 Modeling Software in PERM 1-11
1.3.1 Basic Concepts and Terminology 1-11
1.3.2 Segments 1-14I 1.3.3 Threads 1-18
1.3.4 Task Classes 1-19
1.3.5 System Load 1-201.3.6 Summary 1-211.3.7 Example 1-22

1.4 Computational Strategy 1-25
1.5 PERM Outputs 1-26
1.6 How PERM Supports the System Design Process 1-28
1.7 Limitations 1-29

1.7.1 Transfer Function Coefficients 1-29
1.7.2 Memory Utilization in Join Segments 1-29
1.7.3 Fidelity 1-30
1.7.4 Task Data Size Parameters 1-30
1.7.5 Pipelined Architectures 1-31
1.7.6 PERM is Still a Prototype 1-31

I 2. USER'S GUIDE 2-1
2.1 PERM Configuration and File Considerations 2-1

2.1.1 What is Necessary to Run PERM? 2-1
2.1.2 PERM Files 2-2

2.2 Current Status of PERM Software 2-32.3 PERM Execution and Commands 2-4
2.3.1 IPERM 2-4
2.3.2 CPERM 2-100
2.3.3 DPERM 2-104I

ii

TABLE OF CONTENTS (Continued)

Page

3. PERM TEST CASE: AOA/AOSP TRACKING MODEL 3-1
3.1 Abstract of Analysis Problem 3-1
3.2 Model Design 3-7
3.3 Implementation of Model Design to PERM 3-11
3.4 Verification Approach 3-15
3.5 PERM Verification Results 3-17
3.6 Track Model Test Case Results 3-17
3.7 Track Model Analysis Conclusions and Recommendations 3-26
3.8 PERM Analysis Conclusions and Recommendations 3-27

APPENDIX A LISTING OF PERM TEST CASE A-I

APPENDIX B TRANSFER FUNCTION DESCRIPTIONS B-1

APPENDIX C PERM TRACK MODEL DATA BASE C-1

APPENDIX D PROCESSOR 3 EVENT ACTIVITIES D-1

iv

I
!
* LIST OF FIGURES

I Figure Page

1-1 Major PERM Software Modules 1-2

1-2 Sub-Modules of IPERM 1-3

1-3 Example Processor Ensemble 1-7

1 1-4 An Example of a System Load 1-12

1-5 Threads and Segments 1-13

1-6 Threads and Segments for Tracking Task Class 1-23

1-7 System Load Task Graph 1-24

1-8 Total Resource Utilization 1-27

1 1-9 Processor/Resource Utilization 1-28

13-1 MDP Data Flow 3-2

3-2 AOA MDP Software Configuration 3-3

3-3 AOSP BSTS/ADOP Multi-process 3-4

3-4 Simplified AOSP Node 3-5

3-5 AOSP Hardware Configuration Overview 3-6

U 3-6 Track Task Thread Dependencies 3-8

3-7 Segment to Thread Descriptions 3-9

W 3-8 PERM Allocation of Software to Hardware 3-10

3-9 Track Data Set Allocation 3-11

3-10 PERM Track Model Classes 3-12

I 3-11 Track Model Segment Class Description Part 1 3-12

3-12 Track Model Segment Class Description Part 2 3-13

3-13 Track Model Thread Description 3-14

Iv V

I _

LIST OF FIGURES (Continued)

Figure Page

3-14 PERM Verification Approach 3-15

3-15 PERM Verification Analysis of Event Listing for P3 3-18

3-16 Track Model Memory Capacity Analysis Part 1 3-18

3-17 Track Model Memory Capacity Analysis Part 2 3-19

3-18 Tracking Nodal Memory Capacity Part 1 3-21

3-19 Tracking Nodal Memory Capacity Part 2 3-21

3-20 Resource Use Profile for M5 with 50 Objects in the System 3-22

3-21 Track Model Bus Bandwidth Analysis 3-23

3-22 Track Model Nodal Memory Bandwidth Analysis Part 1 3-24

3-23 Track Model Nodal Memory Bandwidth Analysis Part 2 3-24

3-24 Object Screening Nodal Memory Bandwidth Analysis Part 1 3-25

3-25 Object Screening Nodal Memory Bandwidth Analysis Part 2 3-26

vi

EXECUTIVE SUMMARY

This document is the Final Report on Task Order 14, Subtasks 3 and 4 on BM/C3

Technology (Multi-Grain) performed under contract to SDIO. The prime contractor for this effort
has been The Analytic Sciences Corporation, with SPARTA and Teledyne-Brown Engineering as

sub-contractors. SPARTA was designated technical lead for this work.

Task Order 14 is concerned with Multigrain (that is, parallel) computer architectures in

support of SDI BM/C 3 processing. It began in late April of 1988, and two subtasks were initially

assigned, over a six-month period. The first of these subtasks was to conduct a survey of the
current state-of-the-art in parallel processing architectures. In order to assess the applicability of
these architectures, four representative BM/C3 algorithms were selected and "mapped onto" each

of the eight architectures in Subtask 2. That is, parallel algorithms appropriate to each architecture
were developed, and performance estimates were derived based on instruction counts and data size

estimates.

The area that appeared to L.- of most concern at the conclusion of this phase of Task
Order 14 work was that the four representative BM/C3 algorithms were analyzed in isolation. A
more realistic and convincing analysis would assemble a complete suite of BM/C3 algorithms,

together with realistic time lines and data set sizes. In this way, the true size of a parallel

architecture sufficient to perform the full processing task could be estimated with increased

confidence.

An extension, reported on in this report was organized into two phases running

sequentially for three months each -- Subtasks 3 and 4, respectively. Major deliverables included
a design of a software tool (3-month point, the conclusion of Subtask 3), and the software and

documentation (due at the end of Subtask 4). A second direction of the work dealt with

constcting a test case of sufficient complexity to stress the tool. It was agreed that the test case
would consist of mapping the AOA (Airborne Optical Adjunct) Tracking algorithm (the software

component of the test case) onto an AOSP (Advanced On-board Signal Processor) hardware
i tion (the hardware component of the testcase). A hand-worked example of a significant

sub-case constituted the 3-month deliverable, with the complete test case and accompanying

analysis provided at the 6-month point, the conclusion of Subtask 4.

ES-I

This report provides the record of the work performed under Subtasks 3 and 4.

Section 1 is the System Description of PERM (Processor Ensemble Runtime Model).

Section 2 is the PERM User's Guide.

PERM consists of three major components called, respectively, IPERM, CPERM, and

DPERM. Briefly, IPERM allows the user to specify a model of both the system hardware

(Processor Ensemble) and Software (Tasks). This can then be processed by CPERM to create

files of summary statistics. These files can then be accessed by DPERM to display the data in

tabular or graphical form.

To exercise the PERM model concepts, a tracking model example was implemented.

The target software was the Track Model of the AOA Mission Data Processor. The target software

was the Advanced On-Board Signal Processor (AOSP). Several assumptions were used. For

example, only two of the six track nodes were modeled, to limit the testcase to a reasonable

analysis effort while still exercising parallel processing features.

The track task was modeled in PERM as 13 threads divided into 46 application segments.

Fourteen join segments representing dependencies were also included. The application was

implemented in PERM constructs and run on the IBM PC/AT. Numerical results and graphical

outputs with reasonable values resulted. Several important conc lusions include:

PERM is relatively user-friendly. Data entry, though somewhat
tedious, is self-explanatory with the help of pop-up menus and scroll
options.

PERM provides relatively "quick" respo.,se. Computational runs are
relatively fast, and graphs can be produced in seconds by reducing data
with the selected options. Organization can also speed data entry, thus
increasing turn-around rate.

Like all simulation tools, PERM has limitations. One constraint, its
memory, could be relaxed by employing more efficient software
methods or by porting the software to a workstation.

ES-2

PERM is meant to be used as a feasibility tool. When performing detailed analysis,

PERM should be used with, not instead of, a higher fidelity simulation. The initial version of

PERM represents a very early stage in the life-cycle of each a system. Many follow-on

enhancement possibilities have been identified for possible future work.

ES-3

0.0. INTRODUCTION

This document constitutes the Final Report on Task Order 14, Subtask 3 and 4,

performed under contract to SDIO. The prime contractor for this effort has been The Analytic

Sciences Corporation, with SPARTA and Teledyne-Brown Engineering as sub-contractors.

SPARTA was designated technical lead for this work.

The following two sub-sections provide the background, and an overview of the contents

of this report.

0.1 BACKGROUND

Task Order 14 is concerned with Multigrain (that is, parallel) computer architectures in

support of SDI BM/C3 processing. It began in late April of 1988, and two subtasks were initially

assigned, over a six-month period. The first of these subtasks was to conduct a survey of the

current state-of-the-art in parallel processing architectures. The survey was to be from the point of

view of possible space-basing of these architectures. Thus, a number of issues were to be kept in

mind, including: size/weight/power, radiation hardening, level of integration, security, fault

tolerance, and reliability. The result of Subtask 1 was a briefing in which eight of the most

promising architectures were selected for a more intensive examination of their applicability to

BM/C 3 processing.

The second subtask took up at the point where the first left off. In order to assess the

applicability of these architectures, four representative BM/C 3 algorithms were selected and
"mapped onto" each of the eight architectures. That is, parallel algorithms appropriate to each

architecture were developed, and performance estimates were derived based on instruction counts

and data size estimates. In addition, detailed estimates of S/W/P were made for each of the

architectures when placed in a space-qualified configuration, and an assessment was provided for

security, fault tolerance, and reliability. The results of this study (and the subtask 1 materials)

were presented in a Final Report delivered in September 1988.

0-1

The area that appeared to be of most concern regarding the initiai phase of Task Order 14
work was that the four representative BM/C3 algorithms were analyzed in isolation. A more

realistic and convincing analysis would assemble a complete suite of BM/C3 algorithms, together
with realistic time lines and data set sizes. In this way, the true size of a parallel architecture

sufficient to perform the full processing task could be estimated with increased confidence. An
initial suggestion, then, was that an automated model be constructed for one of the architectures

thought to be of greatest interest.

As the approach received wider review, however, it was observed that such a model, if
intimately tied to a single particular architecture, would be of only limited utility. Better would be a

tool that could model a variety of hardware architectures, and a variety of software algorithms

running on those architectures.

The broad outlines of such a tool were sketched by Dr. Harold Camp of MIT Lincoln
Laboratory. It was recognized that development of such a tool using the original schedule

introduced considerable risk into the program. No additional funds or time were to be provided,

even though the development effort was of a different and substantially broader scope than had

been originally envisioned. However, it was felt by potential users of the tool (especially the
POET) that only a tool with the added generality and flexibility would be of real use to the
program. Further, Dr. Camp agreed to make some of his time and technical advice available,

especially during to the initial part of the project, to help in the design effort and to validate the tool.

The program was organized into two phases running sequentially for three months each
for Subtasks 3 and 4, respectively. A further separation was made between two directions of the

work. The first was the development of the software tool itself. Major deliverables included a
design (due of the 3-month point, the conclusion of Subtask 3), and the software and

documentation (due to the end of Subtask 4). The second direction of the work dealt with
constructing a test case of sufficient complexity to stress the tool. The testcase should also be of

interest to SDIO, independent of the tool. It as agreed early in the project that the test case would

consist of mapping the AOA (Airbone Optical Adjunct) Tracking algorithm (the software
component of the testcase) onto an AOSP (Advanced On-board Signal Processor) hardware

0-2

II

configuration (the hardware component of the testcase). A hand-worked example of a significant

sub-case would constitute the 3-month deliverable, with the complete testcase and accompanying

analysis provided at the 6-month point, the conclusion of Subtask 4.

0.2 OVERVIEW OF THE REPORT

This report provides the record of the work performed under subtasks 3 and 4. At the

top level, it divides into documentation of the tool (Sections 1 and 2) and a description of the test

case (Section 3).

Section 1 is the System Description. It begins with a top-down look at the tool,

introducing and motivating the modeling concept and terminology. Then, detailed descriptions of

the hardware and software modeling capabilities are provided, including PERM outputs, and a

complete worked example. A listing of the example, as specified in PERM data structures, is also

provided in Appendix A.

Section 2 is the PERM User's Guide. It describes the hardware configuration(s)

necessary to support PERM, and provides a comprehensive command-by-command description of

the PERM user interface. These are also available via the on-line Help capability of PERM.

Section 3 presents the testcase. The AOSP hardware model and the associated AOA

software model are presented and explained. Then, performance data generated by PERM is

analyzed. A discussion is also provided of the experience using PERM on a real problem -- both

strengths and weaknesses.

The present version of PERM may be considered a prototype (although not a

throwaway), at the earliest stage of life cycle. There is potential for numerous improvements.

Code modules can be tightened and optimized. Memory management can be refined. Despite

successful test cases, the possibility cannot be completely excluded of deep, logic "bugs". With

practical field experience, enhancements and tidy-up opportunities may be identified and

implemented.

0-3

1. SYSTEM DESCRIPTION

This Section of the Final Report will provide an overview of the PERM modeling tool.

Sections are included that describe: the software design (Section 1.1); modeling a processor
ensemble (Section 1.2); modeling software running on the processor ensemble (Section 1.3); the
computational strategy PERM uses to collect performance statistics (Section 1.4); PERM outputs

(Section 1.5); how PERM can be used to support the system design process (Section 1.6); and
limitations that should be taken into account when considering its use (Section 1.7).

PERM will allow an experienced analyst to observe concurrent, asynchronous resource

utilization by processes running on an array of processors. The resources in question are
memories and busses. As a process runs on a processor, it makes demands on system memories

and busses; concurrently, other processes running on other processors may also be making

demands on these same resources. PERM provides a mechanism for modeling these resource
demands and displaying, for each resource, the aggregate demand from all sources as a function of
time. This means providing models both for the resources and their connectivity -- the system

hardware -- and for the demands against those resources over time -- the software. It also means

providing a computation engine to drive the resource utilization and to keep statistics. Finally, it

means providing a data display capability so that the resource utilization data can be observed and

analyzed.

The following sections describe how PERM provides these capabilities, and how the

analyst would go about using PERM to solve problems of interest in system design and

engineering. Section 2 then provides detailed information on running PERM and on its user

interface.

1.1 OVERVIEW OF THE PERM SOFTWARE DESIGN

PERM consists of three major components called, respectively, IPERM, CPERM, and
DPERM. Briefly, IPERM allows the user to specify a model of both the system hardware
(Processor Ensemble) and Software (Tasks). This can then be processed by CPERM to create
fides of summary statistics. These files can then be accessed by DPERM to display the data in
tabular or graphical form. This relationship is illustrated in Figure 1-1. The following sections
describe the functions of these three modules in greater detail.

1-1

GOrphlcs

Processor Task Sse efrac

Figure 1-1 Major PERM Software Modules

1.1.1 IPERM

This is the largest of the three software components of PERM. Its purpose is to allow the
user to specify a model of both the system hardware (the Processor Ensemble) and software

(Tasks). The data structures built by IPERM are suitable for input to the next software module --
CPERM -- which performs the computational part of the work, and produces statistical

performance data.

IPERM itself consists of three sub-modules: one for specifying a Processor Ensemble;

one for specifying one or more software entities to run on the hardware (Task Class definition);
and one to piece together a number of Task Classes into a System Load suitable for input to
CPERM. Logically, these proceed in order -- first hardware, second software modules to run on

the hardware, and third the complete sequence of software tasks to be processed. Thus, at the top

level, IPERM provides three classes or types of operations: Processor Ensemble operations; Task
Class operations; and System Load operations. This is illustrated by Figure 1-2.

1-2

IPERM

Processor Task System
Ensemble : Class Load

Operations Operations Operations

PE TC SL
Data Data Data T
Files Files Files

L.. L.. 07&V"-W.2

Figure 1-2 Sub-Modules of IPERM

Section 1.2 below will go into greater detail about how to model system hardware using

the Processor Ensemble operations. Section 1.3 describes in greater detail about how to model

system software and loads using Task Class and System Load operations.

1.1.2 CPERM

The purpose of this module is to generate resource utilization statistics based on a PERM
model created using the IPERM modeling capabilities. The user interface is minimal: merely
specify the name of the data file holding the System Load definition as created by IPERM. The
software then "drives" the resources, keeping track of individual and aggregate demand by the
processors for the memories and busses. The files produced by CPERM can then be accessed by

DPERM, the third PERM software module -- for tabular and/or graphical display.

1-3

1.1.3 DPERM

Section 1.4 below provides a more detailed look at the computational algorithm used by
CPERM. This module provides the ability to view and analyze the resource utilization statistics

gathered by CPERM. Two displays provide an event-by-event record of all activity. Two others
provide a resource-vs-time display so that, for example, the bus bandwidth requirements (for any
bus in the PERM model) can be compared, as a function of time, to the actual bandwidth provided
by the bus. Section 1.5 below describes in greater detail the particular kinds of graphical displays

output by DPERM.

1.2 MODELING A PROCESSOR ENSEMBLE IN PERM

This section will describe the way in which an analyst would model a Processor
Ensemble -- the underlying hardware resources (processor, memories, and busses) of the system.

An initial section introduces the basic concepts and terminology. Then, the notion of Classes and
Instantiations is taken up -- a key notion in the PERM modeling strategy. Finally, an example is
provided which illustrates the notions of the previous sections in a concrete way.

1.2.1 Basic Concepts and Terminology

PERM recognizes three basic hardware entities: Processors, Memories, and Busses.

Each will be described in turn.

In PERM, a Processor is conceived of as making demands on other system resources --
memories and busses. Any software that runs on the system always, in PERM, runs on a
processor, and as it runs, it makes demands on the memories and busses connected to (that is,
associated with) its processor. Thus, the primary property a processor has, in the PERM scheme,

1-4

is its connectivity to other processors, memories and busses. That is, the defining property of a

processor is the list of other processors, memories, and busses to which the processor is

connected. In defining a processor to PERM, the analyst must therefore specify:

* the list of connected processors;

* the list of connected memories; and

* the list of connected busses.

These lists, which specify the processor's connectivity, completely specify the processor

in the PERM model.

A memory in PERM has two properties in addition to its connectivity to processors (that

is, the list of processors that can access it). Each memory has a size (in Bytes), and a bandwidth

(in Bytes/Second). Software running on a processor can make demands for both these resources:

for a certain amount of memory required, and for a certain amount of memory I/O (both Reads and

Writes, normalized to Bytes regardless of the word size). All processors connected to a memory

(that is, in the list of processors to which the memory is accessible) can, concurrently and

asynchronously, make demands against both these resources. PERM keeps track of this utilization

over time, and produces reports and graphics that display it for analysis. In defining a memory to

PERM, the analyst must therefore specify:

* the list of processors that can access the memory;

* the size of the memory (in Bytes); and

* the I/O bandwidth of the memory (in Bytes/Second).

A bus in PERM has one property in addition to its connectivity to processors (that is, the

list of processors that can access it). This is its bandwidth (in Bytes/Second). Software running

on a processor can make demands for this resource -- that is, can utilize a certain amount of the

bandwidth. Each processor attached to the bus can, concurrently and asynchronously, make such

demands. PERM keeps track of this utilization over time, and produces reports and graphics that

display it for analysis. In specifying a bus to PERM, therefore, the analyst must enter:

1-5

* the list of processors that can access the bus; and

* the bandwidth of the bus (in Bytes/Second).

In the next section, it will be shown how PERM enables the analyst to enter these lists
and performance parameters in an orderly and efficient manner.

1.2.2 Classes and Instantiations

In defining processors, memories, and busses, PERM utilizes the notions of Classes and
Instantiations. Conceptually, the Class defines generic properties which are inherited by all

members of the class. An instance of the Class is specified both by its name and by its

membership in the Class.

For memories, for example, the size and bandwidth parameters are entered once, and are
inherited by all Class members. Similarly, the bandwidth parameter is entered once for a bus

Class, and is then automatically assigned to all members of that Class.

However, as we have seen, a major defining property of PERM objects is their
connectivity -- that is, the processors, memories, and busses associated with a particular system

resource. Thus, a Class also has a connectivity pattern: each member of the Class has a specified
number of other processor, memory, and bus Classes that are accessible to it.

Specifically, we recall that a processor is defined by three lists: the accessible processors;

the accessible memories; and the accessible busses. Thus, to create a processor Class, it is
necessary to create three generic lists. When a processor of the Class is instantiated, these lists can
be filled in with names of other instantiated processors, memories and busses to which the specific
processor is connected. These generic lists are created by assigning variable names as place-
holders. For the generic list of accessible processors, for example, one variable is named for each

accessible processor, and the Class of that processor is also specified. When an instance of the
Processor Class is created, these variable names are then replaced by the names of instantiated
processors of the designated Class. In this way, the generic lists that describe the Class are turned
into real lists describing the actual connectivity of the Processor Ensemble.

1-6

In a similar way, a Processor Class will have a generic list of memories (and their

Classes) designated by variable place-holders. Likewise a processor Class will have a generic list

of busses (and their Classes) designated by variable place-holders.

An identical device is used for describing the connectivity pattern for memory and bus

Classes. For these, however, it is only necessary to specify the accessible processors: memories

are not connected to memories or busses; and busses are not connected to memories or busses (at

least, not within the PERM modeling strategy). When a memory Class is created, variable place-

holders are entered (with an associated processor Class) for each processor that can be connected

to the memory, and similarly for bus Classes. When a memory (or bus) is instantiated, these

variables are replaced by the names of instantiated processors (of the associated Class).

1.2.3 Example of a Processor Ensemble

We will now illustrate the notion of Classes and Instantiations with an example.

Figure 1-3 shows a simple hardware configuration consisting of two identical processor boards

connected to each other and to a global memory by a system bus. Each processor board, in turn,

has three components: a central processing unit, a local memory, and a direct-memory-access

controller (so that the CPU can proceed to process in parallel with memory and bus I/O).
lnmt rntImt In Clse

Cpu_1 cpu2 } CPU
I I

mere_1 mom2 } OCAL
MEMIORY

dnI dm_2 ! } DMA

o__u0} Bus

sloball sMs O LOBAL

MEMORY

O7*OOOO 7

Figure 1-3 Example Processor Ensemble

1-7

In PERM, we would model this using:

two processor classes, one for the CPU, and one for the DMA. Each
Class will have two members.

two memory classes, for the local memories, and one for the global
memory. The local memory class will have two members, and the
global memory class will have one member.

one bus class, with one member, modeling the system bus.

If we look, for example, at the processor Class associated with the CPUs, we see the

following connectivity pattern: each CPU is accessible to one local memory and to one DMA.

Thus, we will have one variable place holder of class DMA, and one variable place holder of class

LOCAL MEMORY. Let us give the DMA variable place-holder the name "vlocaldma", and the

LOCAL MEMORY variable place-holder the name "vlocalmemory". Then the CPU Class

definition is given by:

variable name Class

v_localdma DMA

v_local_memory LOCAL MEMORY

In a similar way, we can define the DMA class:

variable name Class

v local-cpu CPU

v_other_dma DMA

v_localmemory LOCAL MEMORY

v.global memory GLOBAL MEMORY

vsystembus I/O BUS

The definition for the memory Class LOCAL MEMORY:

variable name Class

vlocaLcpu CPU

vjocal_dma DMA

The definition for the memory Class GLOBAL MEMORY

variable name Class

v_first_ dma DMA

v_second._dma DMA

1-8

I

The definition for the bus Class I/O BUS

variable name Class
v_firstdma DMA

v_second_dma DMA

Once the Classes have been defined, instances of the Classes can be created. Class CPU

has two instances: cpu_l and cpu_2 . Class DMA also has two instances: dma_l and dma_2.
Memory Class LOCAL MEMORY has two instances: mem_1 and mem_2. Memory Class

GLOBAL MEMORY has only one instance: globmem. And finally, the bus Class I/O BUS has

one instance: iobus.

For each instance, we can assign to each variable in the Class definition a corresponding

instance from the associated Class. For example, consider the instantiation of "dma_2" from

processor class DMA. We would have:

variable name instance from Class

v_local-cpu cpu_2 CPU
v_other_dma dmaI DMA

vlocal memory mem_2 LOCAL MEMORY

v.global-memory globmnem GLOBAL MEMORY

v.systembus iobus I/O BUS

The reader will find a complete listing of this example Processor Ensemble in Appendix

A, including all Class definitions and instantiations.

It will be observed that naming conventions are a great help in keeping track of the PERM

entities and their inter-relationships. This is up to the user, and in fact most of the modeling work
must be done in advance of sitting down at the terminal. The PERM interface merely provides an

orderly way of entering the description of the conceptual model.

1-9

As we noted, Memory classes also have two additional parameters: size (in Bytes), and

I/O bandwidth (in Bytes/Second). Likewise, a Bus Class also has a parameter: bandwidth (in

Bytes/Second). These parameter values for the Classes in our example are as follows:

LOCAL MEMORY:

Size: 4,000,000 Bytes

Bandwidth: 30,000,000 Bytes/Second

GLOBAL MEMORY:

Size: 60,000,000 Bytes

Bandwidth: 10,000,000 Bytes/Second

I/O BUS:

Bandwidth: 15,000,000 Bytes/Second

NOTES:
1. There is another bus, not modeled in the example presented above: the

bus connecting the local DMA and CPU to the local memory. This bus,
however, is of a quite different sort than the packetized system bus
which is in the model. The point of including a resource -- bus or
memory -- in a PERM model is interesting in how that shared resource
is used. In this case, the "bandwidth" of the local bus (if that
terminology makes sense in this context) is not an issue. The memory
bandwidth, however, is.

2. It may seem at first unusual to include the DMAs as separate objects in
the PERM model. The motivation for this is to model the concurrent
use of the local memory and global memory. For example, when a data
transfer between the local memory and global memory is being made,
some portion of the bandwidth available from those resources is used by
the DMAs. This leaves correspondingly less bandwidth available to the
CPUs, and may result in a reduction of their processing rate (due to idle
time waiting for access to the memory). It is exactly this kind of
phenomenon that PERM is intended to capture.

3. The "accessible processor" list associated with a processor Class -- that
is, the processors with which a particular processor can synchronize --
does not currently have any role in PERM processing. If desired, it can
be omitted entirely from a PERM model without affecting in any way
the results. For PERM, the key notion is the connectivity between the
processors, on the one hand, and the resources they access (busses and
memories), on the other.

1-10

1.3 MODELING SOFTWARE IN PERIN

In this section, we will examine how an analyst can construct a model of the software

suite to be executed on a Processor Ensemble. We will begin with an introductory overview that

presents the underlying concepts and terminology. This is followed by individual sections

explaining in greater detail the semantics of the software model objects that PERM recognizes and

manipulates. Finally, the example begun in Section 1.2.3 above is continued.

1.3.1 Basic Concepts and Terminology

In this section, we will give a top-down overview of how PERM models software

running on a Processor Ensemble. Subsequent sections will then present a bottom-up look at each

of the objects in greater detail.

At the top level, PERM views the software as an acrylic directed graph of Tasks, called a
System Load. A Task "runs" on a group of processors -- a subset of the full array of processors

described in a Processor Ensemble. It may consist of the full array, or it may consist of a subset of
the array. Tasks can run concurrently -- that is, they can simultaneously be active in the model,
concurrently making demands on any resources (busses or memories) shared by processors

assigned to the Tasks.

An example is shown in Figure 1-4. The System Load shown there consists of five

Tasks. In this example, the first two (top-most) tasks can, if they do not share any processors in
common, execute concurrently. Task 3, however, cannot begin until both Tasks I and 2 have

completed. Task 4 could, in theory, run concurrently with Tasks 1 and 2. Its position in the

diagram, however, suggests that its start may be delayed, either because it requires some
processors initially assigned to Task 1 and 2, or because it has a delayed start time (its data is not

available until after an initial delay). Similarly, Task 5 cannot begin until Tasks 3 and 4 have

completed.

1-11

In addition to a start time dependency (due to completion of previous Tasks, availability

of resources, or initial start time delay), a Task has an input data set size. In Figure 1-4, these are

indicated by the symbols NI, N2, .. , N5. The role of this parameter will be explained shortly.

Suffice to say, at present, that the data size parameter is associated with a Task (and hence, with all

objects comprised by the Task).

ST1 ST2

N1 Task I N2- Task 2

_ST 3

N3 Task 3 N4 Task 4 f
1 1

N5 Task 5

0789i006-003

Figure 1-4 An Example of a System Load

1-12

Figure 1-5 shows the interior of a Task. Each of the vertical sequences of blocks is

called a Thread, and each Thread is associated with a particular instantiated processor in the

Processor Ensemble. The blocks on the Thread are called Segments (see below), and are used to

model the system resource utilization during the time when the segment is active. The Thread,

thus, specifies the sequential order in which the segments are to "execute". In addition, just as the

start of a Task can be dependent on the completion of another Task or Tasks, so can the start of a

Data Size Start Timo

S TASK

Data Size Dependency

S Tnt

P1 P2 oo>. PN

Oie Thread per Processor

Figure 1-5 Threads and Segments

segment be conditioned on the completion of another segment in the Task -- both its immediate

predecessor in the Thread, and also some other segment on a different Thread. PERM provides a

natural way to build up sequences of segments into Threads, and to specify any inter-thread

execution dependencies that may exist.

1-13

If we now look inside a Segment (Figure 1-5), we will find a number of model

parameters that are used to characterize the way in which the Segment will behave when its turn to

execute arrives. The most important of these are Transfer Functions (see Section 1.3.2.1 below).

Transfer Functions are the means by which PERM specifies resource utilization -- run time,

memory size and bandwidth, and bus bandwidth. Basically, the idea is as follows. A segment

belongs to a Thread, and a Thread belongs to (that is, "runs on") an instantiated processor. That

processor, in turn, can access system resources -. whatever busses and memories are accessible to

it in the Processor Ensemble. For each of these resources, a Segment will specify (by means of
Transfer Functions) the amount of that resource -- memory size and bandwidth for memories, and

bus bandwidth for busses -- required during its period of execution. The reason they are called

Transfer Functions (as opposed, say, to constants) is that they accept the Data Size parameter as

input, and compute the resource utilization and run time as an output; different sizes of data input

result in different values of run time and resource utilization. The exact form of a Transfer
Function, and how the analyst specifies it, is discussed in greater detail in Section 1.3.2.1 below.

In addition to its parent Thread and its Transfer Functions, a Segment has two other

characteristics. One is its type -- Application Code, Operating System, or Join -- which are used

for accounting purposes in the Compute phase of PERM. The other is the execution dependency --

that is, for a Join Segment, the Thread/Segment whose completion is required before execution can

continue. Finally, just as a Task can have an initial time offset, so can a Join Segment, so that an

entire Thread, or part of it, can be delayed by some fixed, known amount if that is desired.

1.3.2 Segments

We now begin a bottom-up discussion of the objects that have been introduced above.

We begin by discussing Transfer Functions and how the analyst derives and specifies them. Then

the notion of Classes and instantiations is presented. Finally, the special role of Join segments in

specifying execution dependencies and time offsets is explained.

1.3.2.1 Transfer Functions - As explained above, a Segment "runs" on a

processor; and the processor in turn can access a specified set of system resources -- busses and

memories -- as indicated in the Processor Ensemble when the processor was instantiated. The

purpose of the Transfer Functions is to determine how much of each of these resources (and run

1-14

time) the Segment requires. In addition, it is desired that the resource utilization be a function of

data size: the larger the data size, the longer the run time, and the greater the resources required.

The exact form of a Transfer Function is given as follows. The analyst specifies (inputs)

the values of six parameters:

R (the reduction factor)

Q 1, Q2, and Q3 (the quadratic coefficients)

LI and L2 (the log-linear coefficients)

The transfer function then computes the value, V, as a function of data input size, N, as

follows:

X = R*N ,and

V = QI+Q2*X+Q3*X 2

+ (LI + L2 * X) * LOG2(X)
where V is the desired output as a function of N.
Thus, by choosing the six parameters R, Ql, Q2, Q3, Li and L2 appropriately, the

analyst specifies the output value V of the Transfer Function for any input value of data size N.

These parameters must, of course, be specified separately for every Transfer Function

associated with a Segment. The number of such Transfer Functions is determined by the
accessible resources. Every Segment has a Run Time Transfer Function. It also has two Transfer
Functions for each accessible memory -- one to specify the amount of memory (in Bytes), and the

other to specify the number of Bytes of I/O (including data and instructions, both Reads and
Writes). The number of Bytes of I/O can be divided by the Run Time to compute Memory

Bandwidth. Finally, there will be one Transfer Function for each accessible bus, to specify the
number of Bytes to be sent on the bus during Segment execution. This number can then be

divided by the Run Time to obtain bus bandwidth.

Note that the bandwidth, both for memory and for busses, is an average over the life of

the segment. If greater detail is required, the Segment should be broken up into smaller pieces --
that is, the single Segment should be replaced by two or more Segments that model individual parts

of the Segment activity.

1-15

If we turn to the example Processor Ensemble from Section 1.2.3 above, we find that

any Segment associated with a processor of Class CPU will have three Transfer Functions: one

for Run Time, one for memory size in the LOCAL MEMORY, and one for memory I/O in the
LOCAL MEMORY. Similarly, a Segment running on a DMA processor will have six Transfer

Functions: one for Run Time, one for memory size on the LOCAL MEMORY, one for memory

size on the GLOBAL MEMORY, one for memory I/O on the LOCAL MEMORY, one for memory
I/O on the GLOBAL MEMORY, and one for bus I/O on the I/O BUS. We also see that the

variable names given to these accessible entities (by Class) serve nicely to indicate the type of

Transfer Function, and associated resource, to be specified. This will be discussed in greater detail

in the next Section.

During the Compute phase, PERM will generate a complete record of system activity --

the start and end time of each Segment on every Thread and Task, as well as the resources utilized

while each Segment is active. At any time, then, and for any resource, it is possible to determine
which Segments are active at that time, and what their utilization of that resource is. PERM can

thus generate a graph that shows, for any resource, its utilization as a function of time. This is the
primary output of PERM. The pivotal role of the Transfer Functions thus becomes apparent.

It is up to the analyst to specify the Transfer Functions, and to ensure that the Threads

and sequence of Segments that constitute these Threads do, indeed, model the behavior of interest.
The analyst has complete freedom to include as much or as little detail as may be appropriate.

PERM does not derive Transfer Function coefficients; it merely records them as entered by the

analyst, and then displays the system behavior (derived from these Transfer Functions) as output.

1.3.2.2 Classes and Instantiations - Just as the notions of Class and Instantiation

were used in specifying the Processor Ensemble, the same approach is used to specify the

Segments that make up the Threads and Tasks. In particular, it is desirable that identical Segments

(as given by their Transfer Functions) be allowed to appear on different Threads, or more than

once on the same Thread. The Transfer Functions should be specified once, and then inherited by

every instance of the Segment. Thus, if the analyst edits the Segment definition (say, to change a
Transfer Function coefficient), that change will be immediately inherited by all instances of that

Segment.

1-16

This is accomplished by the notion of a Segment Class. A Segment Class is specified by

the following information:

* the Type of the Segment -- Operating System, Application Code, or Join

• the Processor Class associated with the Segment, taken from the
Processor Ensemble definition

* the coefficients of the Run Time Transfer Function

* for each accessible memory, as indicated by the list of variables (and
their Classes) in the Processor Class definition, the coefficients for the
memory size requirements Transfer Function (in Bytes)

* for each accessible memory, as indicated by the list of variables (and
their Classes) in the Processor Class definition, the coefficients for the
memory 1/0 Transfer Function (in bytes)

* for each accessible bus, as indicated by the list of variables (and their
Classes) in the Processor Class definition, the coefficients for the bus
I/O Transfer Function (in Bytes)

By specifying the Transfer Functions for the variables in the Processor Class, it is

possible for PERM to then associate those Transfer Functions using the instantiated values of those

connectivity variables when the Segment Class is associated with a particular instantiated
processor. Thus, for example (referring to Section 1.2.3), a processor of Class CPU has a

connectivity variable v_localmem associated with a memory of Class LOCAL MEMORY. When

a Segment is defined to run on this Class of Processor, two Transfer Functions (one for size and

one for I/O) will be defined for the variable v_localmem. When this Segment is then associated
with a particular instance of CPU -- say, with processor cpu_2 -- the Transfer Functions will then

refer to the particular memory associated with the variable; in this case, vjocal_mem for cpu_2 is

assigned to mem_2. Thus, the generic connectivity structure used to define a processor Class is

used again, for Segments, to define a generic set of Transfer Functions. These are then inherited
whenever the Segment Class is instantiated.

The way in which Segment Classes are instantiated to form Threads and Task Classes is

discussed at greater length in Sections 1.3.3 and 1.3.4 below.

1-17

1.3.2.3 Join Segments - The role of Join Segments in PERM requires separate
discussion. A Join segment serves two purposes. First, and most important, it provides the
means for specifying inter-thread sequential execution dependencies. For example, suppose a
Segment on one processor requires data produced by a Segment on another processor before it can
proceed. If the data is ready (that is, if the second Segment has completed), the first Segment can
proceed without delay. However, if the second Segment has not completed, the first Segment
must wait, and incur some idle time as a consequence.

In PERM, this means that the execution of the first Segment is conditioned on the
completion of the second. The way PERM implements this is to insert a Join Segment immediately
preceding the first Segment. When the Join Segment is added to the Thread, the analyst will be
asked to specify the dependency -- in our example here, the identity of the second Segment. If,
when the Join Segment is encountered, the second Segment has already completed, then execution

immediately transfers to the first Segment (immediately following the Join Segment). If, on the
other hand, the second Segment has not completed, then the Join Segment is active, and continues
active until the second Segment completes (at which point the Join Segment terminates, and its
successor, the first Segment, can begin).

The second use for a Join Segment is to delay the execution of a portion of a Thread for
some fixed amount of time. That is, a time offset can be specified (in seconds, relative to the start
time of the Task), and the Join Segment does not complete (that is, its successor in the Thread does

not begin) until that time is reached.

No resource utilization is associated with Join Segments. That is, they do not have any
Transfer Functions. Their Run Time, if any, is derived based on the relative completion times of
their two predecessors - the immediate predecessor in the Thread, and the "remote" predecessor
on a different Thread. PERM accounts for time spent in Join Segments as idle time (see Section

1.5 below).

1.3.3 Threads

The usual course of events iii building up to a complete description of the software is to

begin by creating or importing a "pool" of Segment Classes. As described above, these Segment

Classes are associated with Processor Classes (from the Processor Ensemble). Once the full

1-18

collection of Segment Classes has been specified, the next step is to specify Threads made up of

Segments belonging to one or another of these Segment Classes.

To create a Thread, the analyst must specify which instantiated processor, from the

Processor Ensemble, the Thread is to "run" on. Then, the list of Segments that make up the

Thread is drawn from the pool of Segment Classes. Note that the Processor Class of the Segment

must agree with the Processor Class of the instantiated processor associated with the Thread.

Since the Thread is a list, PERM provides a full set of "list manipulation" capabilities: append,

delete, insert, etc. The result is an ordered sequence of Segments.

Whenever a Join Segment is added to a Thread, its predecessor Segment must be

specified and, in fact, must already exist. This implicitly imposes an order on the sequence in

which the various Threads and Segments are instantiated, and the analyst may need to alternate

back and forth between Threads, adding a few segments here and there as successive dependencies

are encountered.

We mention here two additional capabilities provided by PERM to ease the task of

building Threads. First, Segment Classes can be copied from one Task to another. Thus, a

"library" of Segment Class definitions can be built and shared between Tasks easily. Second, it

frequently happens that two or more processors share what amounts to an identical Thread -- that

is, the sequence of Segment Classes for the two Threads are the same. PERM permits the

segments from one Thread to be copied to another wholesale. Note, however, that the

dependencies in the Join Segments may need to be adjusted for the new instance.

1.3.4 Task Classes

We have spoken above of Tasks being composed of Threads which are, in turn,

composed of Segments. This is not strictly correct. Rather, Threads and their Segments (and

Segment Classes) belong to Task Classes. What is generic about a Task Class (as opposed to an

instantiated Task) is the predecessor and successor Task dependencies. Recall, from Section 1.1,

that a full System Load is made up to a directed graph of Tasks (together with data size

specifications for each, and offset start times, if appropriate). However, we would like for

identical copies of the same Task to appear, if desired, multiple times in the System Load. To

accommodate this, we specify everything about the Task except its connectivity -- that is, its

1-19

predecessors and successors in the directed graph. Instead, when the Task Class is created,

variable place-holders are specified to indicate the to-be-created connectivity. During the definition

of a System Load, these place-holders can be replaced by the names of real, instantiated Tasks. In

this way, the directed graph is built in exactly the same way that the connectivity pattern for a

Processor Ensemble was built using Classes and Instantiations.

Thus, the major work in building a Task Class is in specifying the Segment Classes

(Transfer Functions) and then in building Threads. In System Load definition (see Section 1.3.5

below), these Task Classes are then "strung together" into a directed graph of Tasks that constitute

the System Load.

1.3.5 System Load

We have finally returned to the top level again. At this stage in building a complete

PERM model, the analyst has specified a complete Processor Ensemble and one or more Task

Classes. It is now time to specify the System Load -- a directed graph of Tasks for input to the

Compute phase of PERM. To specify the directed graph, each node must have the following

information:

0 the name of the Task

* the Task Class to which the Task belongs

* the Predecessors of the Task in the graph

* the Successors of the Task in the graph

* the offset time, if any, for Task initiation

* the size of the data set to be processed by the Segments in the Task

PERM provides facilities to enter and edit all these parameters. In particular, the forward

and backward dependencies are specified by means of the variable place-holders created for each

Task Class. S.. ct ying the Class of the Task thereby specifies a set of forward and backward

dependency variables whose values (other instantiated Tasks in the System Load) are to be filled

in.

1-20

A complete System Load is the final product of IPERM. A copy is stored to disk, and is

the input for CPERM (see Section 1.4 below).

1.3.6 Summary

We have now seen how a complete PERM hardware and software model can be

constructed. The basic steps are as follows:

1.0 Build a Processor Ensemble by
1. 1 Constructing Classes of

1.1.1 Processors
1.1.2 Memories
1.1.3 Busses

1.2 and then Instantiating the Classes
2.0 Build one or more Task Classes by

2.1 Constructing a Number of Segment Classes using Transfer Functions for
2.1.1 Run Time
2.1.2 Memory Size Requirements
2.1.3 Memory I/O Requirements
2.1.4 Bus I/O Requirements

2.2 and then Constructing Threads from these Segment Classes
3.0 Build a System Load by Instantiating the Task Classes

These steps correspond exactly to the three major IPERM sub-components: Processor
Ensemble operations, Task Class operations, and System Load operations. Note that Step 2
cannot proceed without the output from Step 1; and Step 3 cannot proceed without the output from

Step 2.

This discussion leaves untouched a number of features and properties of PERM having to
do with the user interface and the means provided to name the entities and define their properties.
A complete discussion is provided in the User Guide (Section 2), and particularly the Help Files
provided for every PERM command. Here is a short list of some of the most important features.

I. A menu-driven user interface keyed directly to the PERM data structures
as described above.

1-21

2. Verification routines to validate the internal consistency of PERM data
structures created by the analyst, with error messages pointing to
problem areas.

3. Save and Load capabilities so that intermediate versions of the data
structures can be stored on permanent media for later recall and editing,

4. Print and Display routines so that the current state of the data structures
can be viewed and, if necessary, edited.

1.3.7 Example

Appendix A contains a complete listing of a PERM data structure -- Processor Ensemble,

Task Classes, and System Load. The Processor Ensemble is that presented in Section 1.2.3

above. Here, we will discuss the Task Class and System Load portions of the example.

Three Task Classes have been defined, named (respectively) TRACKING, EPHEMERIS

GENERATION, and BIG SORT/SEARCH. We do not intend to go into details about the

semantics of the underlying software; indeed, for our purposes, we might just as well have labeled

the Task Classes X, Y, and Z. Figure 1-6 shows the Thread list for the TRACKING Task Class,

which uses both CPUs and both DMAs. The Segment naming convention (which is not a PERM

requirement) names the segment by Thread Number and Segment Number within the Thread. Join

and Operating System Segments have been labeled, and the Join dependency structure is indicated

by arrows passing from one Thread/Segment to another.

Refer to the Appendix for the Segment Class of each Segment, and to the Segment Class

for the Transfer Function coefficients. Diagrams similar to Figure 1-6 can be constructed for both

the other two Task Classes. EPHEMERIS GENERATION uses only cpu-l and dma_; BIG

SORT/SEARCH uses only cpu_2 and dma_2.

In Figure 1-7, we present the System Load. This consists of four Tasks: the first and

last are both instances of the TRACKING Task Class, but have different data size input drivers

(2,000 Tracks and 2500 Tracks, respectively). The other two Tasks run concurrently -- one on

cpu_l and dma_l; and the other in cpu_2 and dma_2. Again, refer to Appendix A for a complete

listing of the System Load specification.

1-22

Thawd I Thivad 2 Thawd 4 Thmed S
Cpsa.I daMa.. dMa.2 CPU..2

2.1 1 J 4

2.2 ~ ~ 4.2

1-2 3-2

06 1.3 3.3 CI

1.4 24 &43 3.4

2-4 4.4

1 .5 3.5 J

14 346

1-7 3-7

06 1-$ 34

14 3.

1-2

C _I d - I IpL I maI

Task 1
Tracking

Task 2' Task 3
Ephemeris Big Sort/

.Generation Search

Task 4
Tracking

0789/006-006

Figure 1-7 System Load Task Graph

There are a number of interesting features in this example which show how PERM is
used to create good models of the system behavior. First, consider the collection of Segments 2-6,

2-7, 4-5, and 4-6. This sequence models the movement of a data set from the cpuI/dma.1
complex to the cpu_2/dma_2 complex, using the system bus as the means. The Segment 2-6 is

1-24

IJ

called the Send Data Lag, and reflects the initial time to notify dma_2 that data is on the way. The

Join segment 4-5 is then satisfied, and Segment 4-6 kicks off. Thus, Segments 2-7 (Sending

Data) and 4-6 (Receiving Data) operate concurrently, due to the presence of the short Lag Segment,

2-6. Without it, Segment 4-6 would wait until 2-7 was complete, not an accurate picture of what is

actually occurring. As similar configuration occurs among the Segments 4-7, 4-8, 2-8 and 2-9, as

the corresponding data moves back across the bus from cpu_2 to cpul.

Another instance worthy of note is the short time delay that has been put into Task 3, an

instantiation of the BIG SORT/SEARCH Task Class. As it sits in the System Load, this Task has

no forward or backward dependencies. If its Start Time were 0.0 (that is, if it were the same as

Task 1), then PERM would arbitrarily decide which one to run first. This decision would be

required, since Tasks 1 and 3 share resources (cpu_2 and dma_2). It order to force PERM to

choose the right one (Task 1), we delay the start of Task 3 by a small amount (one millisecond in

this example). In fact, of course, this results in its delay until all its resources have been released

by Task 1.

Finally, note the first few Segments from Threads 1 and 2 in Task 1. These are intended

to simulate the loading and initiating of a program from Global into Local Memory. The Segment

Class names (Initialize, Load Instructions, Fork Process, Load Data) are semantically indicative of

the function each is to perform.

1.4 COMPUTATIONAL STRATEGY

Once a complete and validated System Load has been built and stored to disk, the second

major PERM module -- CPERM -- can be executed. There is not much for the user to do here.

The name of the file holding the System Load definition must be given, and the name of the file(s)

which will hold the output must likewise be specified. Otherwise, CPERM is simply computation.

As we have seen, every Segment has associated with it Transfer Functions that specify

not only the Run Time of the Segment but also its utilization of any resources (memories and

busses) accessible to the processor on which the Segment is "running". What CPERM does is to

write a record corresponding to the start of each Segment. This record contains such information

as the name of the Segment and processor, its duration (Run Time), and resource utilization values

1-25

derived from the Transfer Functions. The input data size required by the Transfer Function is

taken from the Task data size specified at System Load. Thus, all Segments within a Task will use

the same data size value.

At each step, CPERM finds the next earliest Segment start time, scanning over all

Segments in all Tasks. It then writes the corresponding entry to a file, called the Event History

File, in PERM format. One of the outputs produced by DPERM is an ASCII version of this file.

Except for Join completion events, which are handled separately, the file is time ordered; each

entry is no earlier than the preceding one. Thus, a single pass through this file is enough for

DPERM to generate any of its outputs, as we shall see.

Of course, this is something of a simplification, since delays due to Join segments must

be taken into account, as well as lost time while one Task waits for another to complete. However,

the basic idea is here: a file that makes a complete listing of every significant event in the run

history of the System Load.

1.5 PERM OUTPUTS

Once the Compute phase of PERM has processed a System Load, the data generated can

be displayed using the third major PERM module, DPERM. DPERM requires the name of the

output files generated by CPERM.

There are four basic outputs by DPERM. We will discuss each in turn. However, they

are all based on the Event History File produced by CPERM, as described in the preceding section.

The first type of output is an ASCII version of the Event History File. That is, each record --

recording the start time and duration of each Segment, as well as its resource utilization -- is prii ited

in ASCII form either to the screen or to a user-selected DOS file.

The second type of output is the same as the first, except that it relates only to the

Segments associated with a single user-selected processor. Again, the data is either displayed at

the screen or is sent to a DOS file. This output also produces usage statistics for the processor: the

amount of time (and %) it spent in Operating System code and in Application Code. The remaining

time is idle time, and is accounted for both by Join Segments and by starting and ending Tasks.

1-26

1

The third type of output concerns resource utilization. Recall that memories have two

types of utilization: capacity, and I/O bandwidth. Busses have one type: bandwidth. For any
resource, and any type of utilization, PERM will display the utilization of that resource (as a
percentage of total available) as a function of time.

Figure 1-8 shows such a plot for bandwidth utilization of the LOCAL MEMORY mem_1

from our example. Both cpu-l and dmaI can access this memory, and the plot is of the sum of
their utilizations. Only the time interval 2.0 to 6.0 has been selected. DPERM will also print out
the actual values used to make the plot in ASCII form, either to the screen, or to a user selected
DOS file.

6Wdt File tatt2-of&41 elot TWZ

em -

I'

i I f I I11.5 Yb.ftm S o. S. .

My IDIN §M". 6 1.I a

Figure I-8 Total Resource Utilization

The fourth type of output is the same as the third, except that, instead of total utilization,
only the utilization by a selected processor is displayed. Figure 1-9 shows the plot for the usage of

meml bandwidth by cpul as a function of time. The same time interval was used for both

Figures 1-8 and 1-9.

1-27

Emt File tstj*2 Of Ers"la CiT WE

:- fI

. ii
~i I iiI uj

2.S 3-S 4.S 5.5 I.S

low I TN Thr ,I O

Figure 1-9 Processor/Resource Utilization

1.6 HOW PERM SUPPORTS THE SYSTEM DESIGN PROCESS

The major goals directing the design of PERM were the following:

low cost, as reflected by required hardware and by analyst modeling
time;

medium fidelity: better than back-of-the-envelope, but not as good as
low level event-driven simulations; and

rapid turn-around.

PERM is ideally suited to support feasibility analyses. That is, it compares the aggregate

resource utilization against the available resources, and reports. If the report is not acceptable (that

is, for example, if the total memory required exceeds the total available), PERM cannot fix the

problem. Fixing the problem is up to the analyst, either by providing more memory, or by

decreasing the memory requirements in his software model.

I

PERM can be used to rapidly assess the ability of a processor architecture of interest to

support a particular algorithm or processing load. The architecture and software algorithm are
rapidly cast into PERM structures, and then PERM is run against a variety of input data sizes until

it "breaks." By looking at what breaks first and why -- that is, what resource is exhausted first,

and as a result of which Segment or combination of Segments -- the analyst obtains valuable

information about the robustness of the proposed system and its ability to achieve the desired

processing goals.

PERM can also be used to challenge claims of run time performance. Such claims are

often based on processor MIPS or FLOPS rates that are only achievable in short bursts on ideally

suited problems. By taking the analysis one step down, PERM can force the analyst to examine
such things as actual memory bandwidth, or synchronization delays in a distributed processing

environment. In this way, PERM can help the analyst obtain a defensible estimate of the size of

these parameters.

1.7 LIMITATIONS

PERM is not a high fidelity modeling tool, and as such the results that it produces must

not be used in ways that are inappropriate. Further, PERM is only in a prototype stage. We are

aware of improvements that can be made in the modeling strategy and in the user interface. This

section will list the limitations we are aware of, and some of the areas where improvement could be

made. Hopefully, these will be incorporated into subsequent PERM releases.

1.7.1 Transfer Function Coefficients

PERM relies completely on the judgement and experience of the analyst in defining the

Transfer Functions that are the heart of the PERM model. It is easy to make up bad Transfer

Functions; it is much harder, and more time consuming, to make up good ones. In our work on

the project, we have already gained a good deal of experience in how to derive, and document,

Transfer Functions, but it is still very much of an acquired art rather than a science. Anyone using
PERM, or considering analyses based on it, must be aware that the analyst, in effect, has total

1-29

control over the PERM output by way of the Transfer Functions. Or, to state the same matter
another way, if one wishes to have a sense of how reliable the outputs of PERM are, he should

look closely at the Transfer Functions and the techniques the analyst used to estimate or derive

them.

1.7.2 Memory Utilization in Join Segments

The fact that Join Segments have no resource utilization Transfer Functions makes for a
certain awkwardness in using the tool. For, whenever a processor enters a Join Segment, memory
capacity utilization automatically drops to zero, even if the process has just gone into a halt state

temporarily until synchronization. Some "fixes" have been proposed, but they rely on unintuitive
gimmicks, and are not very satisfying. This is something that needs to be looked at in up-coming

releases.

1.7.3 Fidelity

While PERM requires no assumptions about the units of time appropriate to its

simulation, the user will sense that we are, in general, talking about "blocks of code" that might
run on the order of 10's of milliseconds to a few seconds. If that is accurate, then Segments that
run for a few microseconds will be lost in the noise; or alternatively, Segments whose model calls

for Run Times on the order of 10s of seconds will dominate all others. The point is that the Run
Times of the Segments that make up a Task Class should all be more or less compatible -- say,
within three orders of magnitude of each other. This, in turn, may guide the analyst in what he

chooses to model; that is, how many Segments he uses to model a Section of code, and the amount
of time he spends researching and defending his Transfer Function estimates.

1.7.4 Task Data Size Parameters

As we have noted, Transfer Functions accept a Data Size value as input, and produce a
resource utilization value as output, based on the coefficients entered by the analyst during

Segment Class definition. These Data Sizes are then provided at the Task level; every Segment in

the Task uses the same Data Size value.

1-30

This approach is subject to criticism in two ways. First, the particular form of the

Transfer Function does not cover all cases. We can all think, for example, of N**3 algorithms, or

of algorithms that depend on two data sizes. Second, it is a somewhat arbitrary condition to insist

that all Segments in a Task Class must use the same Data Size. Even though the Reduction Factor,

R, can be used to distribute the Data across the array (that is, for example, choosing R = .25 if

there are four processors), there are nevertheless cases where it will not be immediately apparent

what is the best way to model the situation within the PERM structures.

1.7.5 Pipelined Architectures

A similar thing happens when PERM is used to model a highly pipelined, queue/server

type of system. Segments tend to be best at modeling larger blocks of code, rather than many

smaller, event-driven blocks of code. In the AOA/AOSP modeling endeavor, several "tricks" were

developed to model the desired behavior, and the general consensus was that PERM was

remarkably successful. Nevertheless, such architectures are not PERM's natural domain, and a

good deal of analyst ingenuity may be required.

1.7.6 PERM is Still a Prototype

Finally, and perhaps most important, it must be remembered that there is still very little

experience in using PERM on real systems and real problems. Thus, it is still much to early to

decide on its usefulness. There is good reason to think that it can fill an important niche between

expensive low-level event driven simulations and back-of-the-envelope "guesstimation", but only a

great deal of additional experience will decide that question.

1-31

2. USER'S GUIDE

The purpose of this section is to provide specific information on how to install and run

PERM (Section 2.1), on the current status of the PERM software (Section 2.2), and on the PERM

commands (Section 2.3).

2.1 PERM CONFIGURATION AND FILE CONSIDERATIONS

2.1.1 What is Necessary to Run PERM?

PERM is intended to run on IBM PC/AT computers, or compatibles, under the DOS 3.3

operating system. PERM has been run successfully with both 286 and 386 processors, running at

both 12.5 and 20 MHz. It expects an EGA or VGA color monitor, or a Hercules monochrome

monitor. It supports a variety of printers (see the Printer command in DPERM for the current list

of printer drivers), and it expects the printer to be attached to the parallel output port LPTI.

A current limitation on PERM is that it is memory-bound. It does not currently support

extended memory, and it requires a full 640K of core memory to operate efficiently. Even this is

not really enough to be comfortable, and IPERM continuously displays a "Memory Remaining"

message reminding the user of the amount of unused space still available.

[Recent detailed tests have shown that the reported "Space Remaining" is about

20KBytes too large. Correction of this anomaly must await future releases of PERM.]

To keep as much memory as possible available for PERM, it is recommended that PERM
not be run with any TSR (Terminate and Stay Resident) programs. Again, this is not a hard

requirement; PERM has been run successfully with TSRs, but they do use up memory, and that

leaves less for the user to build PERM data structures.

2-1

2.1.2 PERM Files

PERM software consists of three executable DOS files:

* iperm.exe
* cperm.exe
* dperm.exe

In addition, there are three pairs of Help files to support the PERM on-line Help

capability. They are:

* iperm.hlp, iperm.ndx
* cperm.hlp, cperm.ndx
* dperm.hlp, dperm.ndx

These are specially pre-processed ASCII files. They must be in the default directory
whenever the corresponding PERM executable is invoked.

In addition, several test case files are provided, matching the test case presented in

Section 1 and in Appendix A. They are:

* testcase.vpe [a verified Processor Ensemble, suitable for use by
the Load command]

* testtrk.vtc [three verified Task Classes, suitable for use
test_eph.vtc by the Loadcommand]

testsrt.vtc
* testcase.lod [a verified System Load, suitable for use by the

Load command]
* testcase.inx [the output from CPERM, based on

testcase.pe the System Load contained in
testcase.ehf testcase.lod, and suitable for use by DPERM]

When PERM is used, the analyst will be creating additional files: files to store PERM

data structures for later use, text files to review the contents of the PERM data structures, log files

to record PERM error messages or other text written to the screen, etc. In most cases, the user can

specify the complete DOS file name, including the drive/directory path. However, in the hand-off

between CPERM and DPERM, three intermediate files are created by CPERM in the default

2-2

directory, and are looked for by DPERM in the default directory. The user can specify a file name,

but not the extension, and not the drive or directory. This is explained at greater length in the

CPERM Compute command and the DPERM Load command.

2.2 CURRENT STATUS OF PERM SOFTWARE

In this section, the current status of the PERM software will be described, including the

implications for potential users. PERM was developed under a very aggressive schedule. Less

than one man year, over a period of less than six months, was devoted to the development of the

over 35,000 lines of executable code (80,000 total lines) that constitute the three PERM modules.

This has several consequences for the PERM software.

First, it meant forgoing the luxury of a detailed design period. Coding began almost

immediately, and thus PERM was developed in a design-as-you-go fashion.

Second, it has meant that a full testing program was not possible. PERM has been used

by a number of different persons on the PERM development program to build and execute models,

and all known bugs have been fixed. Thus, we feel safe in characterizing PERM as of good

quality for internal use. However, it is not commercial quality, and it is inevitable that additional

errors will crop up.

PERM was built with extensive self-diagnosis and checking code. Should PERM itself

discover an apparent error, a System Error screen is displayed with debugging information. If

such a screen is encountered, it is probably best to save work and exit the tool; it is not safe to

continue to use the tool, since a possibly fatal error condition has been detected. Further, data

saved following a system error should be treated as suspect.

Third, PERM was developed using two PC tool sets. These were purchased with

Government funds, and delivered to the Government together with PERM software and

documentation. They are required for recompilation (fixing PERM bugs), but are no longer with

the developers. Thus, it is not immediately apparent how PERM bugs will be corrected when they

are discovered.

2-3

Fourth and finally, PERM must be considered as being in a prototype phase. It can be

used, but many potential improvements have already been identified, and plans for future versions

of the tool are under discussion. It is not certain that data structures created using the current

version of the tool will necessarily be binary compatible with future versions, should they be

developed.

2.3 PERM EXECUTION AND COMMANDS

In this section, we provide detailed guidance on how to run PERM modules, and on the

commands that drive the PERM system. For each of the three major modules -- IPERM, CPERM,

and DPERM, we indicate how to execute the modules from the DOS environment (that is, what

files are required, and where they should reside). Then, we provide a complete listing of the on-

line Help files provided for every PERM command.

2.3.1 IPERM

2.3.1.1 Running IPERM - In order to execute IPERM, do the following things:

1. Place yourself in a directory. This will be your default directory. Make
sure that the files iperm.hlp and iperm.ndx are in this directory. If the
file iperm.exe is not in this directory, or if any of the other files (holding
Processor Ensemble, Task Class, or System Load data structures) are
not in this directory, be sure you know where they are, so you can
specify them with their full DOS path name.

2. Enter iperm.exe, including its full DOS path if it is not in your current,
default, directory.

2.3.1.2 Help Files of IPERM - This section lists the on-line Help files provided

for the IPERM commands. On-line Help is always available using the <Fl> key. These are

broken into four groups:

* Processor Ensemble Commands

* Task Class Commands

* System Load Commands

0 miscellaneous Commands (Log, Quit, etc.)

2-4

2.3.1.2.1 Help Files for Processor Ensemble Operations

Processor Ensemble Operations (@@P)

The command opens into a tree of sub-menus for building and editing a Processor

Ensemble data structure. When you enter this command, one of two situations wi exist:

(1) you already have a PE data structure in memory (as a result of a
previous Create or Load command); or

(2) you don't have a PE data structure in memory.

In case (1), you will immediately be able to use the commands available at the next lower

menu. In case (2), you must first either Create or Load a PE data structure before any of the other

commands will function.

Create Processor Ensemble (@@CPC)

If there is currently no Processor Ensemble data structure in memory (either because you

just entered PERM, or because you used the Remove command) (see @@PR), there are two ways

of getting one into memory. You can use the Load command (see @@PL) (which retrieves a PE

data structure that has been previously stored to disk using the Save) (command (@@PS); or, you

can use the Create command.

You cannot use the Create command if a PE data structure already exists in memory. To

get rid of that data structure, you must use the Remove command.

NOTE:
The Remove command does not ask the user to "Confirm" the decision, and
immediately and irrevocably erases the data. Thus, if there is any chance that
the data currently in memory may be needed, it is best to first save it to
permanent storage (disk) using the Save command.

When you exercise the Create command, you will be asked for a name (up to 32
characters, including spaces and special characters if you wish) for the PE data structure, and for

your name (author). Other information concerning verify status and dates is displayed, but is not

2-5

editable. Once you have created a PE data structure using the Create command, you can then edit it

or use any of the other PE commands on it.

NOTE:
PERM will only accept (operate on) one PE data structure at a time.

Edit Processor Ensemble (@@PE)

Use of this command opens onto a series of sub-menus that permit the major structures

of a Processor Ensemble to be created and manipulated. The command, and its sub-commands,

operate on the PE data structure that is currently in memory (as the result of a Create or Load

command).

Remove Processor Ensemble (@@PR)

This command immediately clears PERM memory so that the Create or Load commands

can be exercised.

NOTE:
The Remove command does not ask the user to "Confirm" the decision, and
immediately and irrevocably erases the data. Thus, if there is any chance that
the data currently in memory may be needed, it is best to first save it to
permanent storage (disk) using the Save command.

Display Processor Ensemble (@@PD)

Use of this command causes a scrolling ASCII file to be sent to the user's terminal. The

user scrolls through the file one page at a time using (for example) the <space> bar to move to the
next page (as in the DOS "more" command). When the last page appears, so does the PE menu on
top of it. To remove the menu so that the data can be seen, use <ESC> to move up to the top

menu. The PE menu can then be re-entered without losing any data.

The organization of the data constituting the PE data structure is as folows:

First, the Processor Ensemble name and validation status
Second, Processor Classes (one for each Class)

Processor Class name

2-6

- accessible processors variable list
- accessible memories variable list
- accessible busses variable list
Instantiations (one for each instantiation)

Instantiation name
- names for accessible processors
- names for accessible memories
- names for accessible busses

Third, Memory Classes (one for each Class)
Memory Class name
Memory Size (Bytes)
Memory Bandwidth (Bytes/Second)

- accessible processors variable list
Instantiations

Instantiation name
- names for accessible processors

Fourth, Bus Classes (one for each Class)
Bus Class name
Bus Bandwidth (Bytes/Second)

- accessible processors variable list
Instantiations

Instantiation name
- names for accessible processors

As each page is displayed, the user can elect to ignore the remaining data by selecting

<c>; use of any other key will scroll the next page.

There is another way to view the PE data structure. The user can print the same data to a

DOS file using the Print command, and can then exit PERM and use standard DOS utilities (print,

editor etc.) to review the data. If this is done, however, the data should first be saved using the

Save command, since the PE data structure will be lost once PERM is exited. Thus, an advantage

of the Display command is that it enables the user to see the current status of the PE structure

without having to exit PERM.

Load a Processor Ensemble (@@PL)

The PERM commands operate on a Processor Ensemble data structure in memory. There

can only be one such data structure in memory at a time. There are two ways of getting a PE data

structure into memory: first, by using the Create command; and second, by using the Load

command.

2-7

The Load command will Load a PE data structure into memory from a DOS file -- one

that has been previously created using the Save command. Thus, for example, a user can first

Create a PE data structure and work on it for a while; then save that work to a DOS file using the

Save command. At any later time (even after having first exited PERM and then restarted), the
saved work can be brought back into memory to be further worked on using the Load command.

The user will be prompted for the name of a DOS file. A full path name (including

drive/directory) can be included. If that is omitted, the current default directory (the directory from
which PERM was executed) will be used. If the file cannot be found or opened, PERM informs

the user, and waits for further instructions. If you try to Load a file that was not created using the

Save command (that is, a file that does not conform to PERM's internal data structures), PERM
will detect that fact, and won't load the file.

You cannot use the Load command if a PE data structure already exists in memory. The
way to get rid of such a data structure is to first remove it using the Remove command.

NOTE:
The Remove command does not ask the user to "Confirm" the decision, and
immediately and irrevocably erases the data. Thus, if there is any chance that
the data currently in memory may be needed, it is best to first save it to
permanent storage (disk) using the Save command.

Also, just for completeness, we note that there is a big difference between a file created
using the Save command and a file created using the Print command. The file created by Save is in

a form that can be re-loaded and operated on via the Load command. A file created using the Print

command is simply an ASCII text file that can be printed or edited using DOS utilities and

programs. Thus, it would be wise to keep the two distinct by using the DOS file modifier -- say
txxx.DAT" for loadable files, and "xxx.TXT" for ASCII files. If will also prevent you from

inadvertently overwriting a loadable file with an ASCII file, or visa-versa.

Save Processor Ensemble (@@PS)

The purpose of this command is to enable the user to preserve work in a permanent form

so that it can easily be recalled for later use. The command writes the PE data structure to a DOS

file; the data can subsequently be recalled by using the Load command.

2-8

€I

It is not necessary that the full PE data structure be complete. Whatever has been created

will be saved -- even quite partial and incomplete versions. Thus, the user can execute the Save

command frequently during an editing session. If the system should fail, the data will have been

stored to disk, and can be recalled for further use at the point at which it was saved.

The user will be prompted for a DOS file name. The full pathname can be included

(drive/directory); if it is omitted, the current defa-ilt directory will be used for the file (the directory

from which PERM was executed). If PERM cannot open the file, it will notify the user, and wait

for further instruct-*ns. If the file already exists, it will be overwritten (and hence, lost).

In the Task Class operations menu, there is also a Save command. If you should

inadvertently use one of these two Save commands with a file name that already exists, you will

lose that file (that is, the file will be overwritten). Thus, it is probably a good idea to have a file

naming convention that will keep you from getting mixed-up about which are your ASCII files,

your PE files, and your Task Class files.

Also, just for completeness, we note that there is a big difference between a file created

using the Save command and a file created using the Print command. The file created by Save is in

a form that can be re-loaded and operated on via the Load command. A file created using the Print

command is simply an ASCII text file that can be printed or edited using DOS utilities and

programs. A thoughtfully chosen naming convention can help to prevent inadvertent errors and

loss of data.

Print Processor Ensemble (@@PP)

The purpose of this command is to create an ASCII file containing the complete state of

the Processor Ensemble data structure currently in memory. The file is identical to the file that the

Display command routes to the terminal. The order of presentation for the data is:

First, the Processor Ensemble name and validation status
Second, Processor Classes (one for each Class)

Processor Class name
- accessible processors variable list
- accessible memories variable list
- accessible busses variable list

2-9

Instantiations (one for each instantiation)
Instantiation name

- names for accessible processors
- names for accessible memories
- names for accessible busses

Third, Memory Classes (one for each Class)
Memory Class name
Memory Size (Bytes)
Memory Bandwidth (Bytes/Second)

- accessible processors variable list
Instantiations

Instantiation name
- names for accessible processors

The user will be prompted for the name of a DOS file. A full path name (including
orive/directory) can be included. If that is omitted, the current default directory (the directory from

which PERM was executed) will be used. If the file cannot be found or opened, PERM informs

the user, and waits for further instructions.

Also, just for completeness, we note that there is a big difference between a file created

using the Save command and a file created using the Print command. The file created by Save is in

a form that can be re-loaded and operated on via the Load command. A file created using the Print

command is simply an ASCII text file that can be printed or edited using DOS utilities and
programs. Thus, it would be wise to keep the two distinct by using the DOS file modifier -- say
"xxx.DAT" for loadable files, and "xxx.TXT" for ASCII files. If will also prevent you from

inadvertently overwriting a loadable file with an ASCII file, or visa-versa.

After execution of the Print command, the file that has been created can be operated on by

DOS utilities -- the print command, an editor, etc. To do this, the user must exit PERM.

Remember -- if you will want the data for later use, you must first save it using the Save

command.

Verify the Processor Ensemble (@@PV)

The purpose of this command is to ensure the internal consistency of the PE data

structure as it has been entered by the user. In particular, consistent use of Class and Instantiation

names is validated, both verifying the correct spelling of multiple uses of the name (the names

entered with the Create and Instantiate commands being given preference); and validating that all

2-10

class names, and all instantiations within a class, are unique. Any validation errors are reported in

a summary message scrolled onto the terminal; thus, the user is given specific information about

the source of the error so that it can be corrected.

NOTE:
The user may wish to use the PERM Log facilities (top-level commands) if
the error list is too long to remember easily. If a Log file is open, PERM will
write the error message not only to the screen, but also to the Log file. That
file can then be accessed (via DOS programs and utilities), for example, to
obtain a hard-copy.

A validated PE data structure is required before the user can proceed to the
second stage of system definition -- Task Class operations. This is because
the Task Class operations require access to information about the hardware on
which the Segments, Threads, and Tasks that constitute the PERM software
structures will run. If a PE data structure has already exists (in a DOS file)
and has been loaded into memory (using the Load command), it can then be
verified (using the Verify command), and the user can then proceed to Task
Class definition.

Edit Processor Ensemble Header (@@PEH)

This command will enable the user to view and/or change the Processor Ensemble name

and the name of the author. Other information, on verify status, is also displayed, but is not

editable. One might use this command, for example, to begin with an older version of a PE data

structure and then alter it (i.e., edit it) for a new processor configuration.

Edit Processors (@@PEP)

This command opens onto a series of sub-menus that permit the user to create, modify

and display Processor Classes and their Instantiations.

NOTE:
Use of PERM requires familiarity with the underlying PERM concepts and
modeling strategy. The sub-menus that open out from this command are
essentially for data entry. The user must already have identified the major
Processor Ensemble data structures, and selected appropriate naming
conventions. Thus, PERM assumes that a fair amount of preparatory work
has been done prior to this, the data entry stage of using PERM.

2-11

Generally speaking, the correct order for using the PE data structure
commands is to first create all classes (and validate their accuracy), and then
instantiate them. The reason is that Classes cannot be edited (except deleted)
once they have been instantiated. A corollary of this rule is that all Classes --
Processor, Memory, and Bus -- be created and completed before any are
instantiated. While PERM does not enforce this approach, it is the
recommended one.

Edit Memories (@@PEM)

This command opens onto a series of sub-menus that permit the user to create, modify

and display Memory Classes and their Instantiations.

NOTE:
Use of PERM requires familiarity with the underl'ing PERM concepts and
modeling strategy. The sub-menus that open out from this command are
essentially for data entry. The user must already have identified the major
Processor Ensemble data structures, and selected appropiate naming
conventions. Thus, PERM assumes that a fair amount of preparatory work
has been done prior to this, the data entry stage of using PERM.

Generally speaking, the correct order for using the PE data structure
commands is to first create all classes (and validate their accuracy), and then
instantiate them. The reason is that Classes cannot be edited (except deleted)
once they have been instantiated. A corollary of this rule is that all Classes --
Processor, Memory, and Bus -- be created and completed before any are
instantiated. While PERM does not enforce this approach, it is the
recommended one.

Edit Busses (@@aPEB)

This command opens onto a series of sub-menus that permit the user to create, modify

and display Bus Classes and their Instantiations.

Create a Processor Class (@@PEPA)

This command creates the top header (name) for a Processor Class. Names entered will

appear in lower-level scrolling displays to be selected by the user for editing, etc. That is, the first

step in working with a Processor Class is to create it; only then can it be edited.

2-12

Like all other names in PERM, the Processor Class name can be up to 32 characters, and
can contain blanks and other special characters if desired.

NOTE:
PERM will not keep you, at this stage, from re-using the same name for two
different classes. However, this should not be done, and will be detected as
an error when the Verify function is executed (top menu). Also, the effects
on editing classes with the same name will be unpredictable. Thus, use
distinct names for all Processor Classes.

Edit a Processor Class (@@PEPB)

Once a processor class has been created, it can be operated on by the other commands --

Edit, Delete, (See @@PEPC) and Display (See @@PEPD). This command then opens onto a

sub-menu which enables the user to create connectivities to other Processor, Memory, and Bus

Classes.

Delete a Processor Class (@@PEPC)

This command immediately and irrevocably deletes a selected Processor Class from the

current Processor Ensemble data structure.

NOTE:
This command will execute even if there exist instantiations of this Processor
Class. They will be lost, along with all connectivity variable definitions.
Also, no "confirm" is required; once the Class is selected and <Return> is
pressed, the selected Class is immediately deleted. Thus, use this command
with care.

Display all Processor Classes (@@PEPD)

This command operates in a similar manner to the Display option at the top-most menu.
All Processor Class information, including any Instantiations, is sent in ASCII for to the terminal

for inspection. The user scrolls through the file one page at a time using (for example) the <space>
bar to move to the next page (as in the DOS "more" command). When the last page appears, so
does the menu on top of it. To remove the menu so that the data can be seen, use <ESC> <ESC>
<ESC> to move up to the top menu.

2-13

The organization of the data constituting the Processor Class display is as follows:

First, the Processor Ensemble name and validation status
Second, Processor Classes (one for each Class)

Processor Class name
- accessible processors variable list
- accessible memories variable list
- accessible busses variable list
Instantiations (one for each instantiation)

Instantiation name
- names for accessible processors
- names for accessible memories
- names for accessible busses

As each page is displayed, the user can elect to ignore the remaining data by selecting
<c>; use of any other key will scroll the next page.

Instantiate a Processor Class (@@PEPE)

As opposed to Processor Classes, which generically describe the connectivity of an
abatract processor to abstract processors, memories, and busses, an Instantiation creates a "real"
instance of the class -- an object that inherits the connectivity properties of its class. This command

simply allows the user to give a name to the instantiation; its specific properties (that is, its
connectivity to other instantiated entities) is then subsequently established using the "Edit

Instantiation" command.

When executed, the command will first prompt the user to select which of the existing
Processor Classes is to be instantiated. The current Processor Classes will be presented in a list
which is scrolled using the <Home> (up) and <End> (down) keys. When the correct entry is

high-lighted, press <Return> to select it. You will then be asked for the name of the instantiation.

Up to 32 characters are permitted, including blanks and special characters. The command can be
exited at any time without change to the PE data structure by pressing <ESC>.

NOTE:
PERM will not keep you, at this stage, from re-using the same name for two
different instantiations. However, this should not be done, and will be
detected as an error when the Verify function is executed (top menu). Also,
the effects on editing instantiations with the same name will be unpredictable.
Thus, use distinct names for all Processor Class Instantiations.

2-14

Generally speaking, the correct order for using the PE data structure
commands is to first create all classes (and validate their accuracy), and then
instantiate them. The reason is that Classes cannot be edited (except deleted)
once they have been instantiated. A corollary of this rule is that all Classes --
Processor, Memory, and Bus -- be created and completed before any are
instantiated. While PERM does not enforce this approach, it is the
recommended one.

Edit a Processor Class Instantiation (@@PEPF,

Once a Processor Class has been instantiated (using the "Instantiate" command), its

specific connectivity properties can be specified.

Every processor instantiation belongs to a Processor Class (that was selected when the
instantiation was entered). That class, in turn, specifies by means of variable names the

connectivity of that class -- that is, the other Processor, Memory, and Bus Classes a processor (of
that Class) is connected to. Thus, for example, a series of Associated Processor variables was
created along with the Processor Class, each of those variables, in turn, being associated with a
Processor Class of their own. In an instantiation, the variable names are replaced by the names of

instantiations of Processors belongs to the variable's class.

Thus, to edit an instantiation, the user must select the following things:

(1) the type of PE entity (Processor, Memory, or Bus) whose connectivity

variable is to be specified;

(2) what Class of that type the variable belongs to;

(3) what is the name of the variable belonging to that Class; and

(4) the name of the instantiated entity to be assigned to the variable.

The information corresponding to (1) will be selected in the sub-menu that opens under
this command. The information for (2) and (3) is then selected by scrolling menus using the
<Home> and <End> keys; and the information in (4) is entered by keying in the desired name.

2-15

Delete a Processor Class Instantiation (@@PEPG)

This command permits existing instantiations to be deleted from the Processor Ensemble

data structure. The user will first be prompted for the Processor Class the instantiation belongs to,
which is selected from the scrolling window using the <Home> and <End> keys (and <Return> to

select). Then, the existing instantiations from this Class will be presented, and the one to be

deleted is selected in the same manner. If the user decides not to delete anything, the <ESC> key

will exit the command without altering the PE data structure.

Display All Instantiations of a Processor Class (@@PEPH)

This command works similarly to the Display commands at higher menus. However,

only the information related to a single Processor Class and its instantiations is displayed. The

user selects that class from a scrolling window using the <Home> and <End> keys (and <Return>
to select). All information relating to that Processor Class, including all Instantiations, is sent in

ASCII form to the terminal for inspection. The user scrolls through the file one page at a time

using (for example) the <space> bar to move to the next page (as in the DOS "more" command).
When the last page appears, so does the menu on top of it. To remove the menu so that the data

can be seen, use <ESC> <ESC> <ESC> to move up to the top menu.

The organization of the data constituting the Processor Class Instantiation display is as

follows:

Processor Class name
- accessible processors variable list
- accessible memories variable list
- accessible busses variable list
Instantiations (one for each instantiation)

Instantiation name
- names for accessible processors
- names for accessible memories
- names for accessible busses

As each page is displayed, the user can elect to ignore the remaining data by selecting

<c>; use of any other key will scroll the next page.

2-16

Create a Memory Class (@@PEMA)

This command creates the top header (name) for a Memory Class. Names entered will

appear in lower-level scrolling displays to be selected by the user for editing, etc. That is, the first

step in working with a Memory Class is to create it; only then can it be edited.

Like all other names in PERM, the Memory Class name can be up to 32 characters, and

can contain blanks and other special characters if desired.

NOTE:
PERM will not keep you, at this stage, from re-using the same name for two
different classes. However, this should not be done, and will be detected as
an error when the Verify function is executed (top menu). Also, the effects
on editing classes with the same name will be unpredictable. Thus, use
distinct names for all Memory Classes.

In addition to the name of the Memory Class, the user is prompted for two performance

characteristics: the total size (capacity) of the memory (in Bytes); and the memory bandwidth (in

Bytes/Second). These are entered as integers, without commas; entering a value in the wrong

format will result in a error message, and a prompt to re-enter the value. Both memory size and

bandwidth have default values of 1. All instantiations of a Memory Class inherit the size and

bandwidth characteristics of the class to which they belong.

The memory bandwidth ordinarily will not include addresses -- only the number of bytes

that can be transferred by Read and Write operations on the memory. Transfer functions in code

Segments associated with processors that access the memory will specify the amount of bandwidth

the segment requires; these are then summed across all processors that access the memory, and the

total bandwidth requirement can be compared (at any point in time) to the total available bandwidth.

Similarly, memory space requirements (summed across all active segments) can be compared to the

available memory.

Edit a Memory Class (@@PEMB)

Once a memory class has been created, it can be operated on by the other commands --

Edit, Delete, and Display. This command then opens onto a sub-menu which enables the user to

create connectivities to Processor Classes.

2-17

Delete a Memory Class (@@PEMC)

This command immediately and irrevocably deletes a selected Memory Class from the

current Processor Ensemble data structure.

NOTE:
This command will execute even if there exist instantiations of this Memory
Class. They will be lost, along with all connectivity variable definitions.
Also, no "confum" is required; once the Class is selected and <Return> is
pressed, the selected Class is immediately deleted. Thus, use this command
with care.

Display all Memory Classes (@@PEMD)

This command operates in a similar manner to the Display option at the top-most menu.

All Memory Class information, including any Instantiations, is sent in ASCII form to the terminal

for inspection. The user scrolls through the file one page at a time using (for example) the <space>

bar to move to the next page (as in the DOS "more" command). When the last page appears, so

does the menu on top of it. To remove the menu so that the data can be seen, use <ESC> <ESC>

<ESC> to move up to the top menu.

The organization of the data constituting the Memory Class display is as follows:

First, the Processor Ensemble name and validation status
Second, Memory Classes (one for each Class)

Memory Class name
Memory Size (Bytes)
Memory Bandwidth (Bytes/Second)

- accessible processors variable list
Instantiations

Instantiation name
- names for accessible processors

As each page is displayed, the user can elect to ignore the remaining data by selecting

<c>; use of any other key will scroll the next page.

2-18

I | |I

Instantiate a Memory Class (@@PEME)

As opposed to Memory Classes, which generically describe the connectivity of an

abstract memory to abstract processors, an Instantiation creates a "real" instance of the class -- an

object that inherits the connectivity properties of its class. This command simply allows the user to

give a name to the instantiation; its specific properties (that is, its connectivity to other instantiated
entities) is then subsequently established using the "Edit Instantiation" command.

When executed, the command will first prompt the user to select which of the existing

Memory Classes is to be instantiated. The current Memory Classes will be presented in a list

which is scrolled using the <Home> (up) and <End> (down) keys. When the correct entry is

high-lighted, press <Return> to select it. You will then be asked for the name of the instantiation.

Up to 32 characters are permitted, including blanks and special characters. The command can be

exited at any time without change to the PE data structure by pressing <ESC>.

NOTE:
PERM will not keep you, at this stage, from re-using the same name for two
different instantiations. However, this should not be done, and will be
detected as an error when the Verify function is executed (top menu). Also,
the effects on editing instantiations with the same name will be unpredictable.
Thus, use distinct names for all Memory Class Instantiations.

Generally speaking, the correct order for using the PE data structure
commands is to first create all classes (and validate their accuracy), and then
instantiate them. The reason is that Classes cannot be edited (except deleted)
once they have been instantiated. A corollary of this rule is that all Classes --
Processor, Memory, and Bus -- be created and completed before any are
instantiated. While PERM does not enforce this approach, it is the
recommended one.

Edit a Memory Class Instantiation (@@PEMF)

Once a Memory Class has been instantiated (using the "Instantiate" command), its

specific connectivity properties can be specified.

Every memory instantiation belongs to a Memory Class that was selected when the

instantiation was entered. That class, in turn, specifies by means of variable names the

connectivity of that class -- that is, the other Processor Classes a memory is connected to. Thus,

2-19

for example, a series of Associated Processor variables was created along with the Memory Class,

each of those variables, in turn, being associated with their own Processor Class. In an
instantiation, the variable names are replaced by the names of instantiations of processors

belonging to the variable's class.

Thus, to edit an instantiation, the user must select the following things:

(1) what Processor Class the variable belongs to;
(2) what is the name of the variable belonging to that Class; and
(3) the name of the instantiated processor to be assigned to the variable.

This information will be entered from the sub-menu that follows this command, which
also permits the user to edit the name of the instantiation (Header). The information for (1) and (2)
is then selected by scrolling menus using the <Home> and <End> keys; and the information in (3)
is entered by keying in the desired name.

Delete a Memory Class Instantiation (C@PEMG)

This command permits existing instantiations to be deleted from the Processor Ensemble

data structure. The user will first be prompted for the Memory Class the instantiation belongs to,
which is selected from the scrolling window using the <Home> and <End> keys (and <Return> to

select). Then, the existing instantiations from this Class will be presented, and the one to be
deleted is selected in the same manner. If the user decides not to delete anything, the <ESC> key
will exit the command without altering the PE data structure.

Display All Instantiations of a Memory Class (@@PEMH)

This command works similarly to the Display commands at higher menus. However,
only the information related to a single Memory Class and its instantiations is displayed. The user

selects that class from a scrolling window using the <Home> and <End> keys (and <Return> to

select). All information relating to that Memory Class, including all Instantiations, is sent in ASCII
form to the terminal for inspection. The user scrols through the file one page at a time using (for

example) the <space> bar to move to the next page (as in the DOS "more" command). When the
last page appears, so does the menu on top of it. To remove the menu so that the data can be seen,

use <ESC> <ESC> <ESC> to move up to the top menu.

2-20

The organization of the data constituting the Memory Class Instantiation display is as
follows:

Memory Class name
Memory Size (Bytes)
Memory Bandwidth (Bytes/Second)

- accessible processors variable list
Instantiations

Instantiation name
- names for accessible processors

As each page is displayed, the user can elect to ignore the remaining data by selecting
<c>; use of any other key will scroll the next page.

Create a Bus Class (@@yPEBA)

This command creates the top header (name) for a Bus Class. Names entered will appear
in lower-level scrolling displays to be selected by the user for editing, etc. That is, the first step in
working with a Bus Class is to create it; only then can it be edited.

Like all other names in PERM, the Bus Class name can be up to 32 characters, and can
contain blanks and other special characters if desired.

NOTE:
PERM will not keep you, at this stage, from re-using the same name for two
different classes. However, this should not be done, and will be detected as
an error when the Verify function is executed (top menu). Also, the effects
on editing classes with the same name will be unpredictable. Thus, use
distinct names for all Bus Classes.

In addition to a name for the Bus Class, the user will be prompted for a total Bus
Bandwidth (in Bytes/Second). This is entered as an integer, without commas; entering a value in
the wrong format will result in an error message, and a prompt to re-enter the value. Bus
bandwidth has a default value of 1.

2-21

All instantiations of a Bus Class inherit the bandwidth characteristics of that class. Each

code segment on a processor that can access the bus will contain a transfer function specifying the

amount of bandwidth required by the segment. These are summed across active segments (at any

point in time) to obtain the total bandwidth requirement, and this requirement is then compared

against the actual bandwidth capacity of the bus.

Edit a Bus Class (@@PEBB)

Once a bus class has been created, it can be operated on by the other commands -- Edit,

Delete, and Display. This command then opens onto a sub-menu which enables the user to create

connectivities to Processor Classes.

Delete a Bus Class (@@CPEBC)

This command immediately and irrevocably deletes a selected Bus Class from the current

Processor Ensemble data structure.

NOTE:
This command will execute even if there exist instantiations of this Bus Class.
They will be lost, along with all connectivity variable definitions. Also, no
"confirm" is required; once the Class is selected and <Return> is pressed, the
selected Class is immediately deleted. Thus, use this command with care.

Display all Bus Classes (@@PEBD)

This command operates in a similar manner to the Display option at the top-most menu.

All Bus Class information, including any Instantiations, is sent in ASCII form to the terminal for

inspection. The user scrolls through the file one page at a time using (for example) the <space>

bar to move to the next page (as in the DOS "more" command). When the last page appears, so

does the menu on top of it. To remove the menu so that the data can be seen, use <ESC> <ESC>

<ESC> to move up to the top menu.

The organization of the data constituting the Bus Class display is as follows:

First, the Processor Ensemble name and validation status
Fourth, Bus Classes (one for each Class)

2-22 I

Bus Class name
Bus Bandwidth (Bytes/Second)

- accessible processors variable list
Instantiations

Instantiation name
- names for accessible processors

As each page is displayed, the user can elect to ignore the remaining data by selecting

<c>; use of any other key will scroll the next page.

Instantiate a Bus Class (a@@PEBE)

As opposed to Bus Classes, which generically describe the connectivity of an abstract

bus to abstract processors, an Instantiation creates a "real" instance of the class -- an object that

inherits the connectivity properties of its class. This command simply allows the user to give a
name to the instantiation; its specific properties (that is, its connectivity to other instantiated entities)

is then subsequently established using the "Edit Instantiation" command.

When executed, the command will first prompt the user to select which of the existing

Bus Classes is to be instantiated. The current Bus Classes will be presented in a list which is

scrolled using the <Home> (up) and <End> (down) keys. When the correct entry is high-lighted,
press <Return> to select it. You will then be asked for the name of the instantiation. Up to 32

characters are permitted, including blanks and special characters. The command can be exited at
any time without change to the PE data structure by pressing <ESC>.

NOTE:
PERM will not keep you, at this stage, from re-using the same name for two
different instantiations. However, this should not be done, and will be
detected as an error when the Verify function is executed (top menu). Also,
the effects on editing instantiations with the same name will be unpredictable.
Thus, use distinct names for all Bus Class Instantiations.

Edit a Bus Class Instantiation (@@PEBF)

Once a Bus Class has been instantiated (using the "Instantiate' "ommand), its specific

connectivity properties can be specified.

2-23

Every bus instantiation belongs to a Bus Class that was selected when the instantiation
was entered. That class, in turn, specifies by means of variable names the connectivity of that
class -- that is, the other Processor Classes a bus is connected to. Thus, for example, a series of

Associated Processor variables was created along with the Bus Class, each of those variables, in
turn, being associated with their own Processor Class. In an instantiation, the variable names are
replaced by the names of instantiations of processors belonging to the variable's class.

Thus, to edit an instantiation, the user must select the following things:

(1) what Processor Class the variable belongs to;

(2) what is the name of the variable belonging to that Class; and

(3) the name of the instantiated processor to be assigned to the variable.

This information will be entered from the sub-menu that follows this command, which
also permits the user to edit the name of the instantiation (Header). The information for (1) and (2)

is then selected by scrolling menus using the <Home> and <End> keys; and the information in (3)

is entered by keying in the desired name.

Delete a Bus Class Instantiation (@@PEBG)

This command permits existing instantiations to be deleted from the Processor Ensemble

data structure. The user will first be prompted for the Bus Class the instantiation belongs to,
which is selected from the scrolling window using the <Home> and <End> keys (and <Return> to

select). Then, the existing instantiations from this Class will be presented, and the one to be

deleted is selected in the same manner. If the user decides not to delet.; anything, the <ESC> key
will exit the command without altering the PE data structure.

Display All Instantiations of a Bus Class (@@PEMH)

This command works similarly to the Display commands at higher menus. However,
only the information related to a single Bus Class and its instantiations is displayed. The user

selects that class from a scrolling window using the <Home> and <End> keys (and <Return> to
select). All information relating to that Bus Class, including all Instantiations, is sent in ASCII
form to the terminal for inspection. The user scrolls through the file one page at a time using (for

2-24

I
I

example) the <space> bar to move to the next page (as in the DOS "more" command). When the

last page appears, so does the menu on top of it. To remove the menu so that the data can be seen,
use <ESC> <ESC> <ESC> to move up to the top menu.

The organization of the data constituting the Bus Class Instantiation display is as follows:

Bus Class name
Bus Bandwidth (Bytes/Fecond)

- accessible processors variable list
Instantiations

Instantiation name
- names for accessible processors

As each page is displayed, the user can elect to ignore the remaining data by selecting

<c>; use of any other key will scroll the next page.

Edit the Header of a Processor Class (@C@PEPBA)

Use of this command will allow the user to change the name of an existing Processor
Class. The user scrolls through the existing Classes using the <Home> and <End> keys, and
selects the desired one by entering <Return>. The new name can then be entered.

This command should be used with caution, since connectivities associated with Classes

(Processor, Memory, and Bus) are entered by specifying Class names. If the Class name is
changed, references to it in connectivity specifications must also be changed, or the PE structure

will fail verification.

Add an Accessible Processor Variable (@@PEPBB)

The defining property of a Processor Class is its connectivity pattern -- that is, the list of
other Processors, Memories, and Busses to which it is accessible. These connectivities are

specified by means of variable names which act as place-holders until the Class is instantiated.

When instantiated, the variable names are replaced by "real" names -- that is, names of other

instantiated Processors, Memories, and Busses.

2-25

In PERM, for one Processor to be "accessible" to another means that threads running on

those two processors can have inter-thread execution dependencies; heuristically, it means that the

processors have some means of synchronizing -- for example, by means of a shared memory, a

shared bus, or some low-level signalling capability.

As noted above, connectivities are specified using variable names as place holders. That

is, a list of variable names is created. When a processor of the Class is instantiated, the variable

names will be replaced with the instantiated names of "real" processors. The purpose of this

command is to create the list of variable names, and to associate with each variable name a

Processor Class.

The Verify command will validate that the Processor Class name associated with each

variable is, in fact, the name of a Processor Class as entered via the PERM Processor Class Create

or Edit Header commands. This is primarily a question of correct spelling. Also, it will be

verified that the variable names are all unique within a given Class; duplicate variable names are not

permitted, although PERM does not detect them at this point in the data entry process. Thus, use

distinct variable names in the Accessible Processors list for each Processor Class.

When the command is executed, the user is presented with a menu of Processor Classes;

the <Home> and <End> keys are used to scroll, and <Return> to select. Then, a menu is offered,

providing one field for the variable name, and one for the Processor Class the variable is to belong

to. The user can move freely between the fields using the <arrow> keys. The variable name can

be up to 32 characters, including special characters. The name entered for the Processor Class

should agree exactly (that is, character by character) with a Processor Class name as entered using

the Create Processor Class command or the Edit Processor Class Header command. Failure to do

so will be detected by the Verify command.

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

2-26

Edit an Accessible Processor Variable (@@PEPBC)

The defining property of a Processor Class is its connectivity pattern -- that is, the list of

other Processors, Memories, and Busses to which it is accessible. These connectivities are

specified by means of variable names which act as place-holders until the Class is instantiated.

When instantiated, the variable names are replaced by "real" names -- that is, names of other

instantiated Processors, Memories, and Busses.

In PERM, for one Processor to be "accessible" to another means that threads running on

those two processors can have inter-thread execution dependencies; heuristically, it means that the

processors have some means of synchronizing -- for example, by means of a shared memory, a

shared bus, or some low-level signaling capability.

As noted above, connectivities are specified using variable names as place holders. That

is, a list of variable names is created. When a processor of the Class is instantiated, the variable

names will be replaced with the instantiated names of "real" processors. The purpose of this

command is to edit the list of variable names that has already been created (by use of the "Add

Accessible Processor" command).

The Verify command will validate that the Processor Class name associated with each

variable is, in fact, the name of a Processor Class as entered via the PERM Processor Class Create

or Edit Header commands. This is primarily a question of correct spelling. Also, it will be

verified that the variable names are all unique within a given Class; duplicate variable names are not

permitted, although PERM does not detect them at this point in the data entry process. Thus, use
distinct variable names in the Accessible Processors list for each Processor Class.

When the command is executed, the user is first presented with a menu of Processor

Classes; the <Home> and <End> keys are used to scroll, and <Return> to select. Then, the

current list of variables associated with that Processor Class is presented; scrolling and selection

operate in the same way. Once the class and variable names have been selected, a menu is

presented with the current data -- both the variable name, and the Processor Class associated with

the variable.

2-27

NOTE:
One important use for this command is to correct spelling errors in the
Processor Class field.

The user can move freely between the fields using the <arrow> keys. The variable name

can be up to 32 characters, including special characters. The name entered for the Processor Class

should agree exactly (that is, character by character) with a Processor Class name as entered using

the Create Processor Class command or the Edit Processor Class Header command. Failure to do

so will be detected by the Verify command.

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

Delete an Accessible Processor Variable (@@PEPBD)

The purpose of this command is to delete a name from the list of variables designating the

accessible processors associated with a Processor Class. These variables were previously created

using the "Add Accessible Processor" command (or, edited using the "Edit Accessible Processor"

command).

When the command is executed, the user is first presented with a menu of Processor

Classes; the <Home> and <End> keys are used to scroll, and <Return> to select. Then, the
current list of variables associated with that Processor Class is presented; scrolling and selection

operate in the same way. Selection of the variable immediately results in its deletion from the
current list of variables. The command can be exited without change to the PE data structure by

entering <ESC>.

Add an Accessible Memory Variable (@@PEPBE)

The defining property of a Processor Class is its connectivity pattern -- that is, the list of
other Processors, Memories, and Busses to which it is accessible. These connectivities are

specified by means of variable names which act as place-holders until the Class is instantiated.

2-28

When instantiated, the variable names are replaced by "real" names -- that is, names of other

instantiated Processors, Memories, and Busses.

In PERM, for a Memory to be "accessible" to a Processor means that, when a segment

runs on that processor, it can make demands (both space and bandwidth) on that memory. These

resource demands are specified by means of transfer functions -- two for each memory accessible

to the processor. Likewise, when a Memory Class is defined, associated with it is a list of

associated Processors. Thus, the association is specified twice: once processor-to-memory, and

once memory-to-processor. The consistency of this dual specification is validated by the Verify

command.

As noted above, connectivities are specified using variable names as place holders. That

is, a list of variable names is created. When a processor of the Class is instantiated, the variable

names will be replaced with the instantiated names of "real" memories. The purpose of this

command i3 to create the list of variable names, and to associate with each variable name a Memory

Class.

The Verify command will validate that the Memory Class name associated with each
variable is, in fact, the name of a Memory Class as entered via the PERM Memory Class Create or

Edit Header commands. This is primarily a question of correct spelling. Also, it will be verified

that the variable names are all unique within a given Class; duplicate variable names are not

permitted, although PERM does not detect them at this point in the data entry process. Thus, use

distinct variable names in the Accessible Memories list for each Processor Class.

When the command is executed, the user is presented with a menu of Processor Classes;

the <Home> and <End> keys are used to scroll, and <Return> to select. Then, a menu is offered,

providing one field for the variable name, and one for the Memory Class the variable is to belong

to. The user can move freely between the fields using the <arrow> keys. The variable name can

be up to 32 characters, including special characters. The name entered for the Memory Class

should agree exactly (that is, character by character) with a Memory Class name as entered using

the Create Memory Class command or the Edit Memory Class Header command. Failure to do so

will only be detected by the Verify command.

2-29

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

Edit an Accessible Memory Variable (@@PEPBF)

The defining property of a Processor Class is its connectivity pattern -- that is, the list of

other Processors, Memories, and Busses to which it is accessible. These connectivities are

specified by means of variable names which act as place-holders until the Class is instantiated.
When instantiated, the variable names are replaced by "real" names -- that is, names of other

instantiated Processors, Memories, and Busses.

In PERM, for a Memory to be "accessible" to a Processor means that, when a segment

runs on that processor, it can make demands (both space and bandwidth) on that memory. These

resource demands are specified by means of transfer functions -- one for each memory acce.,sible

to the processor. Likewise, when a Memory Class is defined, associated with it is a list of

associated Processors. Thus, the association is specified twice: once processor-to-memory, and

once memory-to-processor. The consistency of this dual specification is validated by the Verify

command.

As noted above, connectivities are specified using variable names as place holders. That

is, a list of variable names is created. When a processor of the Class is instantiated, the variable

names will be replaced with the instantiated names of "real" memories. The purpose of this

command is to edit the list of variable names that has already been created (by use of the "Add

Accessible Memory" command).

The Verify command will validate that the Memory Class name associated with each

variable is, in fact, the name of a Memory Class as entered via the PERM Memory Class Create or

Edit Header commands. This is primarily a question of correct spelling. Also, it will be verified

that the variable names are all unique within a given Class; duplicate variable names are not

permitted, although PERM does not detect them at this point in the data entry process. Thus, use

distinct variable names in the Accessible Memories list for each Processor Class.

2-30 I

I

When the command is executed, the user is first presented with a menu of Processor

Classes; the <Home> and <End> keys are used to scroll, and <Return> to select. Then, the
current list of variables associated with that Processor Class is presented; scrolling and selection
operate in the same way. Once the class and variable names have been selected, a menu is
presented with the current data -- both the variable name, and the Memory Class associated with

the variable.

NOTE:
One important use for this command is to correct spelling errors in the
Memory Class field.

The user can move freely between the fields using the <arrow> keys. The variable name

can be up to 32 characters, including special characters. The name entered for the Memory Class
should agree exactly (that is, character by character) with a Memory Class name as entered using
the Create Memory Class command or the Edit Memory Class Header command. Failure to do so

will be detected by the Verify command.

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

Delete an Accessible Memory Variable (C@PEPBG)

The purpose of this command is to delete a name from the list of variables designating the

accessible memories associated with a Processor Class. These variables were previously created

using the "Add Accessible Memory" command (or, edited using the "Edit Accessible Memory"

command).

When the command is executed, the user is first presented with a menu of Processor

Classes; the <Home> and <End> keys are used to scroll, and <Return> to select. Then, the
current list of variables associated with that Processor Class is presented; scrolling and selection
operate in the same way. Selection of the variable immediately results in its deletion from the
current list of variables. The command can be exited without change to the PE data structure by

entering <ESC>.

2-31

Add an Accessible Bus Variable (@@PEPBH)

The defining property of a Processor Class is its connectivity pattern -- that is, the list of
other Processors, Memories, and Busses to which it is accessible. These connectivities are

specified by means of variable names which act as place-holders until the Class is instantiated.
When instantiated, the variable names are replaced by "real" names -- that is, names of other
instantiated Processors, Memories, and Busses.

In PERM, for a Bus to be "accessible" to a Processor means that, when a segment runs
on that processor, it can make bandwidth demands on that bus. These resource demands are

specified by means of transfer functions -- one for each bus accessible to the processor. Likewise,
when a Bus Class is defined, associated with it is a list of associated Processors. Thus, the

association is specified twice: once processor-to-bus, and once bus-to-processor. The consistency

of this dual specification is validated by the Verify command.

As noted above, connectivities are 5pecified using variable names as place holders. That

is, a list of variable names is created. When a processor of the Class is instantiated, the variable

names will be replaced with the instantiated names of "real" busses. The purpose of this command
is to create the list of variable names, and to associate with each variable name a Bus Class.

The Verify command will validate that the Bus Class name associated with each variable
is, in fact, the name of a Bus Class as entered via the PERM Bus Class Create or Edit Header

commands. This is primarily a question of correct spelling. Also, it will be verified that the
variable names are all unique within a given Class; duplicate variable names are not permitted,

although PERM does not detect them at this point in the data entry process. Thus, use distinct

variable names in the Accessible Busses list for each Processor Class.

When the command is executed, the user is presented with a menu of Processor Classes;

the <Home> and <End> keys are used to scroll, and <Return> to select. Then, a menu is offered,
providing one field for the variable name, and one for the Bus Class the variable is to belong to.

The user can move freely between the fields using the <arrow> keys. The variable name can be up

to 32 characters, including special characters. The name entered for the Bus Class should agree

2-32

exactly (that is, character by character) with a Bus Class name as entered using the Create Bus

Class command or the Edit Bus Class Header command. Failure to do so will be detected by the

Verify command.

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

Edit an Accessible Bus Variable (@@PEPBI)

The defining property of a Processor Class is its connectivity pattern -- that is, the list of
other Processors, Memories, and Busses to which it is accessible. These connectivities are

specified by means of variable name which act as place-holders until the Class is instantiated.

When instantiated, the variable names are replaced by "real" names -- that is, names of other

instantiated Processors, Memories, and Busses.

In PERM, for a Bus to be "accessible" to a Processor means that, when a segment runs

on that processor, it can make bandwidth demands on that bus. These resource demands are

specified by means of transfer functions -- one for each bus accessible to the processor. Likewise,
when a Bus Class is defined, associated with it is a list of associated Processors. Thus, the

association is specified twice: once processor-to-bus, and once bus-to-processor. The consistency
of this dual specification is validated by the Verify command.

As noted above, connectivities are specified using variable names as place holders. That

is, a list of variable names is created. When a processor of the Class is instantiated, the variable

names will be replaced with the instantiated names of "real" busses. The purpose of this command

is to edit the list of variable names that has already been created (by use of the "Add Accessible

Bus" command).

The Verify command will validate that the Bus Class name associated with each variable

is, in fact, the name of a Bus Class as entered via the PERM Bus Class Create or Edit Header
commands. This is primarily a question of correct spelling. Also, it will be verified that the

variable names are all unique within a given Class; duplicate variable names are not permitted,

2-33

although PERM does not detect them at this point in the data entry process. Thus, use distinct

variable names in the Accessible Busses list for each Processor Class.

When the command is executed, the user is first presented with a menu of Processor

Classes; the <Home> and <End> keys are used to scroll, and <Return> to select. Then, the
current list of variables associated with that Processor Class is presented; scrolling and selection

operate in the same way. Once the class and variable names have been selected, a menu is

presented with the current data -- both the variable name, and the Bus Class associated with the

variable.

NOTE:
One important use for this command is to correct spelling errors in the Bus
Class field.

The user can move freely between the fields using the <arrow> keys. The variable name
can be up to 32 characters, including special characters. The name entered for the Bus Class

should agree exactly (that is, character by character) with a Bus Class name as entered using the

Create Bus Class command or the Edit Bus Class Header command. Failure to do so will be

detected by the Verify command.

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

Delete an Accessible Bus Variable (@@PEPBJ)

The purpose of this command is to delete a name from the list of variables designating the

accessible busses associated with a Processor Class. These variables were previously created

using the "Add Accessible Bus" command (or, edited using the "Edit Accessible Bus" command).
When the command is executed, the user is first presented with a menu of Processor Classes; the

<Home> and <End> keys are used to scroll, and <Return> to select. Then, the current list of

variables associated with that Processor Class is presented; scrolling and selection operate in the

2-34

same way. Selection of the variable immediately results in its deletion from the current list of

variables. The command can be exited without change to the PE data structure by entering

<ESC>.

Edit the Header of a Memory Class (@@PEMBA)

This command allows the user to change header information associated with an existing

Memory Class -- in particular, its name, and the memory size and bandwidth. The user chooses

the class to be edited by scrolling using the <Home> and <End> keys; when the cursor reaches the

desired Class, enter <Return>, and the header will be displayed for editing. The command can be

exited at any time without change to the PE data structure by pressing <ESC>.

The fields in the header can be selected using the <arrow> keys; use of <Return>

terminates the command, and records any edits in the permanent PE data structure.

Since any instantiations of a Class inherit all the Class characteristics, changing the

bandwidth and size parameters in the header automatically changes them in the associated

instantiations. We recall that size is to be entered as an integer, and has units of Bytes. Bandwidth

is also entered as an integer, and has units Bytes/Second. PERM will detect mis-formatted entries,

and will prompt for re-entry.

Changes to the Class name should be used with caution, since connectivities associated

with Classes (Processor, Memory, and Bus) are entered by specifying Class names. If the Class
name is changed, references to it in connectivity specifications must also be changed, or the PE

structure will fail verification.

Add an Accessible Processor Variable (@@PEMBB)

The defining property of a Memory Class is its connectivity pattern -- that is, the list of

Processors which can access it. These connectivities are specified by means of variable names

which act as place-holders until the Class is instantiated. When instantiated, the variable names are

replaced by "real" names -- that is, names of instantiated Processors. Segments running on those

processors can then, by means of transfer functions, make demands on the memories to which

they are connected.

2-35

Associated with each Processor Class is a list of associated Memories. Similarly, with
each Memory Class is a list of associated Processors. Thus, the association is specified twice: one
processor-to-memory, and once memory-to-processor. The consistency of this dual specification

is validated by the Verify command.

As noted above, connectivities are specified using variable names as place holders. That
is, a list of variable names is created. When a memory of the Class is instantiated, the variable
names will be replaced with the instantiated names of "real" processors. The purpose of this
command is to create the list of variable names, and to associate with each variable name a

Processor Class.

The Verify command will validate that the Processor Class name associated with each
variable is, in fact, the name of a Processor Class as entered via the PERM Processor Class Create
or Edit Header commands. This is primarily a question of correct spelling. Also, it will be
verified that the variable names are all unique within a given Class; duplicate variable names are not

permitted, although PERM does not detect them at this point in the data entry process. Thus, use
distinct variable names in the Accessible Processors list for each Processor Class.

When the command is executed, the user is presented with a menu of Memory Classes;
the <Home> and <End> keys are used to scroll, and <Return> to select. Then, a menu is offered,
providing one field for the variable name, and one for the Processor Class the variable is to belong
to. The user can move freely between the fields using the <arrow> keys. The variable name can
be up to 32 characters, including special characters. The name entered for the Processor Class
should agree exactly (that is, character by character) with a Processor Class name as entered using
the Create Processor Class command or the Edit Processor Class Header command. Failure to do
so will only be detected by the Verify command.

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

2-36

Edit an Accessible Processor Variable (@@PEMBC)

The defining property of a Memory Class is its connectivity pattern -- that is, the list of

Processors which can access it. These connectivities are specified by means of variable names

which act as place-holders until the Class is instantiated. When instantiated, the variable names are

replaced by "real" names -- that is, names of instantiated Processors. Segments running on those

processors can then, by means of transfer functions, make demands on the memories to which

they are connected.

Associated with each Processor Class is a list of associated Memories. Similarly, with

each Memory Class is a list of associated Processors. Thus, the association is specified twice: one

processor-to-memory, and once memory-to-processor. The consistency of this dual specification

is validated by the Verify command.

As noted above, connectivities are specified using variable names as place holders. That

is, a list of variable names is created. When a memory of the Class is instantiated, the variable

names will be replaced with the instantiated names of "real" processors. The purpose of this

command is to edit the list of variable names and associated Processor Classes that (as created by

the "Add Accessible Processor" command).

The Verify command will validate that the Processor Class name associated with each

variable is, in fact, the name of a ?rocessor Class as entered via the PERM Processor Class Create

or Edit Header commands. This is primarily a question of correct spelling. Also, it will be

verified that the variable names are all unique within a given Class; duplicate variable names are not

permitted, although PERM does not detect them at this point in the data entry process. Thus, use

distinct variable names in the Accessible Processors list for each Processor Class.

When the command is executed, the user is first presented with a menu of Memory

Classes; the <Home> and <End> keys are used to scroll, and <Return> to select. Then, the

current list of variable names is presented, with scrolling and selection operating in the same

manner. At this point, the current data is displayed for editing. Two fields are offered; one, for

the variable names; and the other, for the associated Processor Class.

2-37

NOTE:
An important use for this command is to correct spelling errors in the
Processor Class name. These errors will be pointed out by the Verify
command.

The user can move freely between the fields using the <arrow> keys. The variable name
can be up to 32 characters, including special characters. The name entered for the Processor Class

should agree exactly (that is, character by character) with a Processor Class name as entered using
the Create Processor Class command or the Edit Processor Class Header command. Failure to do
so will be detected by the Verify command.

The command can be exited at any time using the <ESC> key without altering the PE data
structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

Delete an Accessible Processor Variable (&@@PENIBD)

The purpose of this command is to delete a name from the list of variables designating the

accessible processors associated with a Memory Class. These variables were previously created

using the "Add Accessible Processor" command (or, edited using .he "Edit Accessible Processor"

command).

When the command is executed, the user is first presented with a menu of Memory

Classes; the <Home> and <End> keys are used to scroll, and <Return> to select. Then, the
current list of variables associated with that Memory Class is presented; scrolling and selection

operate in the same way. Selection of the variable immediately results in its deletion from the
current list of variables. The command can be exited without change to the PE data structure by

entering <ESC>.

2-38

I

Edit the Header of a Bus Class (@@PEBBA)

This command allows the user to change header information associated with an existing
Bus Class -- in particular, its name and bandwidth. The user chooses the class to be edited by

scrolling using the <Home> and <End> keys; when the cursor reaches the desired Class, enter
<Return>, and the header will be displayed for editing. The command can be exited at any time
without change to the PE data structure by pressing <ESC>.

The fields in the header can be selected using the <arrow> keys; use of <Return>
terminates the command, and records any edits in the perma, it PE data structure.
Since any instantiations of a Class inherit all the Class characteristics, changing the bandwidth

parameter in the header automatically changes it in the associated instantiations. We recall that
bandwidth is entered as an integer, and has units Bytes/Second. PERM will detect mis-formatted

entries, and will prompt for re-entry.

Changes to the Class name should be used with caution, since connectivities associated
with Classes (Processor, Memory, and Bus) are entered by specifying Class names. If the Class
name is changed, references to it in connectivity specifications must also be changed, or the PE

structure will fail verification.

Add an Accessible Processor Variable (@@PEBBB)

The defining property of a Bus Class is its connectivity pattern -- that is, the list of
Processors which can access it. These connectivities are specified by means of variable names
which act as place-holders until the Class is instantiated. When instantiated, the variable names are

replaced by "real" names -- that is, names of instantiated Processors. Segments running on those

processors can then, by means of transfer functions, make demands on the busses to which they

are connected.

Associated with each Pro- or Class is a list of associated Busses. Similarly, with each
Bus Class is a list of associated Processors. Thus, the association is specified twice: one
processor-to-bus, and once bus-to-processor. The consistency of this dual specification is

validated by the Verify command.

2-39

As noted above, connectivities are specified using variable names as place holders. That

is, a list of variable names is created. When a bus of the Class is instantiated, the variable names

will be replaced with the instantiated names of "real" processors. The purpose of this command is

to create the list of variable names, and to associate with each variable name a Processor Class.

The Verify command will validate that the Processor Class name associated with each

variable is, in fact, the name of a Processor Class as entered via the PERM Processor Class Create

or Edit Header commands. This is primarily a question of correct spelling. Also, it will be

verified that the variable names are all unique within a given Class; duplicate variable names are not

permitted, although PERM does not detect them at this point in the data entry process. Thus, use

distinct variable names in the Accessible Processors list for each Processor Class.

When the command is executed, the user is presented with a menu of Bus Classes; the

<Home> and <End> keys are used to scroll, and <Return> to select. Then, a menu is offered,

providing one field for the variable name, and one for the Processor Class the variable is to belong

to. The user can move freely between the fields using the <arrow> keys. The variable name can

be up to 32 characters, including special characters. The name entered for the Processor Class

should agree exactly (that is, character by character) with a Processor Class name as entered using

the Create Processor Class command or the Edit Processor Class Header command. Failure to do

so will only be detected by the Verify command.

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

Edit an Accessible Processor Variable (@@PEBBC)

The defining property of a Bus Class is its connectivity pattern -- that is, the list of

Processors which can access it. These connectivities are specified by means of variable names

which act as place-holders until the Class is instantiated. When instantiated, the variable names are

replaced by "real" names - that is, names of instantiated Processors. Segments running on those

processors can then, by means of transfer functions, make demands on the busses to which they

are connected.

2-40

Associated with each Processor Class is a list of associated Busses. Similarly, with each

Bus Class is a list of associated Processors. Thus, the association is specified twice: one

processor-to-bus, and once bus-to-processor. The consistency of this dual specification is

validated by the Verify command.

As noted above, connectivities are specified using variable names as place holders. That

is, a list of variable names is created. When a bus of the Class is instantiated, the variable names

will be replaced with the instantiated names of "real" processors. The purpose of this command is

to edit the list of variable names and associated Processor Classes (as created by the "Add

Accessible Processor" command).

The Verify command will validate that the Processor Class name associated with each

variable is, in fact, the name of a Processor Class as entered via the PERM Processor Class Create

or Edit Header commands. This is primarily a question of correct spelling. Also, it will be

verified that the variable names are all unique within a given Class; duplicate variable names are not

permitted, although PERM does not detect them at this point in the data entry process. Thus, use

distinct variable names in the Accessible Processors list for each Processor Class.

When the command is executed, the user is presented with a menu of Bus Classes; the

<Home> and <End> keys are used to scroll, and <Return> to select. Then, a menu of the current

variable names is presented; scrolling and selection operate in the same manner. Finally, an

editable header is shown containing the current data associated with the variable: that variable

name; and, the Processor Class associated with the variable.

NOTE:
An important use for this function is to correct spelling errors for the
Processor Class name. The presence of such errors will be detected by the
Verify command.

The user can move freely between the fields using the <arrow> keys. The variable name

can be up to 32 characters, including special characters. The name entered for the Processor Class

should agree exactly (that is, character by character) with a Processor Class name as entered using

the Create Processor Class command or the Edit Processor Class Header command. Failure to do

so will only be detected by the Verify command.

2-41

The command can be exited at any time using the <ESC> key without altering the PE data

structure. Once <Return> is entered, the permanent PE structure is altered to contain whatever

edits the user has entered.

Delete an Accessible Processor Variable (@@PEBBD)

The purpose of this command is to delete a name from the list of variables designating the

accessible processors associated with a Bus Class. These variables were previously created using

the "Add Accessible Processor" command (or, edited using the "Edit Accessible Processor"

command).

When the command is executed, the user is first presented with a menu of Bus Classes;

the <Home> and <End> keys are used to scroll, and <Return> to select. Then, the current list of
variables associated with that Bus Class is presented; scrolling and selection operate in the same

way. Selection of the variable immediately results in its deletion from the current list of variables.

The command can be exited without change to the PE data structure by entering <ESC>.

Edit the Header of a Processor Instantiation (@@ PEPFA)

This command allows the user to change the name of an instantiation -- for example,
because he discovers it has been misspelled. The user is prompted of the Class and name of the

instantiation to be edited, using scrolling menus (<Home> and <End> to move the cursor, and
<Return> to select). The Instantiation Header is then presented, and the instantiation name field

can be edited. The <ESC> key exits the command without effecting the data structure, and the

<Return> key executes the command and updates the structure.

Instantiate an Accessible Processor Variable (@@PEPFB)

The major defining characteristic of a Processor Class is the list of variables that specifies

the connectivity of any processor in that Class is other Processors, Memories, and Busses. When

a Processor Class is then instantiated, these connectivity variables are replaced by the names of
real, instantiated Processors, Busses, and Memories. The purpose of this command is to enable

the user to specify this assignment for the variables relating to Accessible Processors.

2-42

I

The user will be prompted for three pieces of information: (1) the Class of the processor
whose instantiation is being edited; (2) the name of the instantiated processor (of that class) being
edited; and (3) the variable name for one of the Accessible Processor variables whose value is to be
specified. These selections are made successively from scrolling menus in the usual manner --
<Home> and <End> to move the cursor, and <Return> to select.

Next, a menu is presented with the field to be edited. The user is to enter the name of an
instantiated processor, of the Class belonging to the variable. During verification, this name will

be checked to validate that it is, indeed, the name of an instantiated processor belonging to the
Processor Class associated with the variable. It will also be verified that the list of associated

processors for that processor contains the name of the processor being edited.

As usual, the user can exit this command without changing the PE data structure by using
<ESC>. The <Return> key executes the command, and updates the PE data structure.

Instantiate an Accessible Memory Variable (@@PEPFC)

The major defining characteristic of a Processor Class is the list of variables that specifies

the connectivity of any processor in that Class is other Processors, Memories, and Busses. When

a Processor Class is then instantiated, these connectivity variables are replaced by the names of
real, instantiated Processors, Busses, and Memories. The purpose of this command is to enable

the user to specify this assignment for the variables relating to Accessible Memories.

The user will be prompted for three pieces of information: (1) the Class of the processor
whose instantiation is being edited; (2) the name of the instantiated processor (of that class) being

edited; and (3) the variable name for one of the Accessible Memory variables ihose value is to be

specified. These selections are made successively from scrolling menus in the usual manner --
<Home> and <End> to move the cursor, and <Return> to select.

Next, a menu is presented with the field to be edited. The user is to enter the name of an
instantiated processor, of the Class belonging to the variable. During verification, this name will
be checked to validate that it is, indeed, the name of an instantiated processor belonging to the
Memory Class associated with the variable. It will also be v-rified that the list of associated
processors for that processor contains the name of the processor being edited.

2-43

As usual, the user can exit this command without changing the PE data structure by using

<ESC>. The <Return> key executes the command, and updates the PE data structure.

Instantiate an Accessible Bus Variable (@@PEPFD)

he major defining characteristic of a Processor Class is the list of variables that specifies

the connectivity of any processor in that Class is other Processors, Memories, and Busses. When

a Processor Class is then instantiated, these connectivity variables are replaced by the names of

real, instantiated Processors, Busses, and Memories. The purpose of this command is to enable

the user to specify this assignment for the variables relating to Accessible Busses.

The user will be prompted for three pieces of information: (1) the Class of the processor

whose instantiation is being edited; (2) the name of the instantiated processor (of that class) being

edited; and (3) the variable name for one of the Accessible Processor variables whose value is to be

specified. These selections are made successively from scrolling menus in the usual manner --

<Home> and <End> to move the cursor, and <Return> to select.

Next, a menu is presented with the field to be edited. The user is to enter the name of an

instantiated processor, of the Class belonging to the variable. During verification, this name will

be checked to validate that it is, indeed, the name of an instantiated processor belonging to the Bus

Class associated with the variable. It will also be verified that the list of associated processors for

that processor contains the name of the processor being edited.

As usual, the user can exit this command without changing the PE data structure by using

<ESC>. The <Return> key executes the command, and updates the PE da;a structure.

Edit the Header of a Memory Instantiation (@@PEMFA)

This command allows the user to change the name of an instantiation -- for example,

because he discovers it has been misspelled. The user is prompted for the Class and name of the

instantiation to be edited, using scrolling menus (<Home> and <End> to move the cursor, and

<Return> to select). The Instantiation Header is then presented, and the instantiation name field
can be edited. The <ESC> key exits the command without effecting the data structure, and the

<Return> key executes the command and updates the structure.

2-44

Instantiate an Accessible Processor Variable (@@PEMFB)

The major defining characteristic of a Memory Class is the list of variables that specifies
the connectivity of any memory in that Class to other Processors, Memories, and Busses. When a
Memory Class is then instantiated, these connectivity variables are replaced by the names of real,

instantiated Processors. The purpose of this command is to enable the user to specify this

assignment for the Accessible Processor variables.

The user will be prompted for three pieces of information: (1) the Class of the memory
whose instantiation is being edited; (2) the name of the instantiated memory (of that class) being

edited; and (3) the variable name for one of the Accessible Processor variables whose value is to be
specified. These selections are made successively from scrolling menus in the usual manner --
<Home> and <End> to move the cursor, and <Return> to select.

Next, a menu is presented with the field to be edited. The user is to enter the name of an
instantiated processor, of the Class belonging to the variable. During verification, this name will

be checked to validate that it is, indeed, the name of an instantiated processor belonging to the
Processor Class associated with the variable. It will also be verified that the list of associated

memories for that processor contains the name of the memory being edited.

As usual, the user can exit this command without changing the PE data structure by using
<ESC>. The <Return> key executes the command, and updates the PE data structure.

Edit the Header of a Bus Instantiation (@@PEBFA)

This command allows the user to change the name of an instantiation -- for example,

because he discovers it has been misspelled. The user is prompted for the Class and name of the
instantiation to be edited, using scrolling menus (<Home> and <End> to move the cursor, and
<Return> to select). The Instantiation Header is then presented, and the instantiation name field

can be edited. The <ESC> key exits the command without effecting the data structure, and the

<Return> key executes the command and updates the structure.

2-45

Instantiate an Accessible Processor Variable (@@PEBFB)

The major defining characteristic of a Bus Class is the list of variables that specifies the
connectivity of any memory in that Class to other Processors. When a Bus Class is then
instantiated, these connectivity variables are replaced by the names of real, instantiated Processors.
The purpose of this command is to enable the user to specify this assignment for the Accessible

Processor variables.

The user will be prompted for three pieces of information: (1) the Class of the memory
whose instantiation is being edited; (2) the name of the instantiated memory (of that class) being

edited; and (3) the variable name for one of the Accessible Processor variables whose value is to be
specified. These selections are made successively from scrolling menus in the usual manner --
<Home> and <End> to move the cursor, and <Return> to select.

Next, a menu is presented with the field to be edited. The user is to enter the name of an
instantiated processor, of the Class belonging to the variable. During verification, this name will
be checked to validate that it is, indeed, the name of an instantiated processor belonging to the
Processor Class associated with the variable. It will also be verified that the list of associated

busses for that processor contains the name of the bus being edited.

As usual, the user can exit this command without changing the PE data structure by using
<ESC>. The <Return> key executes the command, and updates the PE data structure.

2.3.1.2.2 Help Files for Task Class Operations

Task Class Operations ((&@T)

This top-level command opens onto a tree of sub-menus that allow the user to operate on
(i.e., save, load, create, edit, delete) Task Classes, including particularly Threads and Segments.

2-46

NOTE:
The Task Class operations require that a validated Processor Ensemble (PE)
data structure be currently in memory, and Task Classes are created with
reference to that PE structure. The PE structure is obtained by using the
appropriate commands in the PE command menu (Create or Load).
When the Task Class menu is entered, one of two states exists:

(1) there are no Task Classes currently in memory; or,
(2) there are some Task Classes currently in memory.

If (1) holds, the user's first order of business will be to get one or more Task
Classes into memory -- either by creating them using the Create command, or
by loading them into memory using the Load command. If, on the other
hand, Task Classes do exist in memory, then the Task Class operations can
be issued without further ado.

The PERM commands are primarily intended for data entry. The user should
already have organized the Task Class segments and threads prior to using
PERM, including the adoption of mnemonic naming conventions.

Create a Task Class (@@TC)

Unlike Processor Ensemble operations, PERM can hold multiple distinct Task Classes in

memory concurrently. Thus, even if some Task Classes have already been Created or Loaded, this

command can still be executed to create additional Task Classes. Task Classes created and verified
using Task Class operations can then be instantiated into a System Load using Load operations

(top level menu).

When this command is executed, the user will be presented with a menu, including two

highlighted fields for editing. The first is the name of the Task Class. Task Class names for a
given PE structure must all be unique, and PERM will not permit creation of identically named

Task Classes. Task Class names can be up to 32 characters, including special characters. Also a
field (optional) is provided for the name of the author of the Task Class; again, a 32-character limit
is imposed. Additional information that is displayed (but not editable) includes the creation date,
the associated PE structure, and the most recent verification date (null when Create is executed).

Once Task Classes have been created using this command, they can be edited (to add

Segments and Threads).

2-47

Select a Target Task Class (@@TT)

All commands at this level (except Create) operate on only one Task Class, and hence
will require the user to select that Task Class by scrolling through a menu presented for that

purpose. The Target command allows the user to move (the name of) a particular Task Class to the
top of the scrolling menu list. This will save time when a number of repetitive operations
involving the same Task Class must be performed.

When the command is executed, a menu is presented displaying the current list of Task
Classes. The user can move the cursor up and down (respectively) through this menu by using the
<Home> and <End> keys (respectively). Entering <Return> moves the currently selected Task

Class to the top of the scrolling stack. Like all other PERM commands, this one can be exited
using <ESC> without changing the current TC structure in any way.

Edit a Task Class (@@TE)

This command opens onto a series of sub-menus to allow the user to edit and display all
aspects of a Task Class, including Segments and Threads. The actual Task Class to be edited is
not selected until the desired operation (e.g., create segment) is selected from the next sub-menu.

Remove a Task Class (a@@TR)

The purpose of this command is to delete a Task Class data structure from memory. The
user will be presented with a menu; the Task Class is then selected by scrolling up (<Home>) or
down (<End>) till the desired Task Class is highlighted; pressing <Return> then causes the

selected TC structure to be deleted from memory. No "confirm" prompt is presented. The
command can be exited using <ESC> without change to the PERM TC structures.

NOTE:
Once this command is exercised against a selected Task Class, all information
contained in that Task Class is immediately and irrevocably lost. Hence, if
there is any chance that this information may be subsequently needed, it is
best to first save the information to permanent disk by using the Save
command. Then, if desired, the data structure can be re-loaded into memory
using the Load command.

2-48

Display a Task Class Data Structure (@TD)

The purpose of this command is to print to screen the complete current data structure

associated with a selec.ed Task Class. When the command is executed, the user selects the desired
Task Class by scrolling up (<Home>) or down (<End>), and then pressing <Return> when the

desired Task Class is highlighted. The data structure will then be printed to the screen, in a manner
similar to the DOS "more" command. However, scrollir,' through the display can be terminated at

any time by entering <c>.

The format of the displayed information is as follows:
1. Task Class Header Information

[Name, Processor Ensemble, Author, Creation
date, Validation Status, and most recent
validation date and time.]

2. Input and Output Dependencies Variables
For each Input Dependency Variable
Name and Task Class

For each Output Dependency Variable
Name and Task Class

3. Segment Table
For Each Segment Class

Segment Name Class
Processor Class
Number of Instantiations
Segment Class Type (Join, OS, AC)
Transfer Function Coefficients

Run Time
Memory Size (one for each accessible memory
variable)
Memory Bandwidth (one for each
accessible memory variable)
Bus Bandwidth (one for each
accessible bus variable)

4. Thread Table
For each Thread

Thread Name
Processor Name (instantiated) z.ad Class
Segment List

For each Segment
Segment Name
Segment Class
Segment Type (Join, OS, AC)
For Join Segments,

Predecessor Thread and
Segment

2-49

Another way to review the data for a Task Class is to use the Print command. This

command will print to a user-selected DOS file an identical ASCII copy of the data sent to the

terminal by the Display command. That file can then be operated on by any DOS program or utility

(i.e., the DOS "print" command, a text editor, etc.). However, this will require first exiting
PERM. Thus, the advantage of the Display command is that it allows the user to see the data

structure without having to exit PERM.

Load a Task Class From Disk (@@TL)

The purpose of this command is to enable the user to restore to memory a Task Class
structure that has previously been saved to disk using the Save command. The user will be
prompted for the file name. A full DOS path (including drive and directory) can be entered; if this

is omitted, PERM will use the default directory (the directory from which PERM was executed).
If PERM cannot find or open the named file, it reports back an error message, and waits for further

instruction; and similarly, if it finds that the file does not contain a TC data structure, or if it finds
that the name of the TC data structure in the file duplicates the name of an existing TC data

structure.

NOTE:
PERM requires correspondence between a Task Class and a PE data
structure. When a Task Class is created, that correspondence is est-Iblished
automatically; the code inserts the name of the current PE data structure into
the Task Class header. However, it is possible to load a Task Class from
disk whose associated Proc ssor Ensemble name does not agree with the
name of the Processor Ensemble currently in memory. In this case, PERM
changes the PE name to match the one currently in memory, and notifies the
user of this fact. As the warning message says, however: if the Task Class
structures (Segments, etc.) do not agree with the current PE structure,
unpredictable system response can be expected, and the resulting melange will
not pass verification. To summarize: be sure that the Task Class you load into
memory agrees with the PE structure currently in memory; PERM will attempt
to detect inconsistencies, but this is ultimately the user's responsibility.

2-50

Save a Task Class to Disk (@@TS)

The purpose of this command is to enable a user to save (for later retrieval and reuse) the

current status of a Task Class (TC) data structure to permanent disk. When executed, the user will

select the Task Class to be saved by scrolling up (<Home>) or down (<End>) through the
displayed list until the desired Task Class is selected (<Return>). The user will also be prompted
for a DOS file name; this can include a full path name (drive and directory), or PERM will use the

default directory (the directory from which PERM executed).

If the file already exists, it will be overwritten by PERM, and its existing contents lost. If
PERM cannot open the file, an error message is displayed, and PERM waits for further

instruction.

Once the TC structure has been saved using this command, it can later be recalled into

memory using the Load command. Also, it is not necessary that the saved TC structure be
complete or verified; partial and/or incomplete structures can be saved, and then later recalled for

completion or editing. As a general rule, structures should be regularly saved during an editing

session so that work will not be lost due to system failure (power outage, etc.).

NOTE:
There is an important distinction between a file created using the Save
command and one created using the Print command. A file created using the
Save command is in the internal, binary format required by PERM software.
The Print, command, on the other hand, creates a user-readable, ASCII file
which can be edited, printed, etc. using DOS utilities and programs. Such a
file is useful in that it enables a user to view the contents of the data structure,
but it cannot be used by PERM directly to restore a TC structure. Using DOS
extensions (e.g., ".DAT" and ".TXT"), the user can create a mnemonic
naming convention to help enforce the important distinction.

Print an ASCII File of a Task Class (@@TP)

The purpose of this command is to print to a permanent disk file an ASCII file of the
contents of a user-selected Task Class. The format of the data is as follows:

2-51

1. Task Class Header Information
[Name, Processor Ensemble, Author, Creation
date, Validation Status, and most recent
validation date and time.]

2. Input and Output Dependencies Variables
For each Input Dependency Variable

Name and Task Class
For each Output Dependency Variable

Name and Task Class
3. Segment Table

For Each Segment Class
Segment Name Class
Processor Class
Number of Instantiations
Segment Class Type (Join, OS, AC)
Transfer Function Coefficients

Run Time
Memory Size (one for each
accessible memory variable)
Memory Bandwidth (one for each
accessible memory variable)
Bus Bandwidth (one for each
accessible bus variable)

4. Thread Table
For each Thread

Thread Name
Processor Name (instantiated) and Class
Segment List

For each Segment
Segment Name
Segment Class
Segment Type (Join, OS, AC)
For Join Segments,

Predecessor Thread and
Segment

When executed, the user will select the Task Class to be printed by scrolling up

(<Home>) or down (<End>) through the displayed list until the desired Task Class is selected

(<Return>). The user will also be prompted for a DOS file name; this can include a full path name
(drive and directory), or PERM will use the default directory (the directory from which PERM

executed).

If the file already exists, it will be overwritten by PERM, and its existing contents lost. If

PERM cannot open the file, an error message is displayed, and PERM waits for further

instruction.

2-52

NOTE:
There is an important distinction between a file created using the Save
command and one created using the Print command. A file created using the
Save command is in the internal, binary format required by PERM software.
The Print, command, on the other hand, creates a user-readable, ASCII file
which can be edited, printed, etc. using DOS utilities and programs. Such a
file is useful in that it enables a user to view the contents of the data structure,
but it cannot be used by PERM directly to restore a TC structure. Using DOS
extensions (e.g., ".DAT" and ".TXT"), the user can create a mnemonic
naming convention to help enforce the important distinction.

Verify a Task Class (@@TV)

The purpose of this function is to verify the consistency of a Task Class data structure,

both internally, and against its associated (verified) Processor Ensemble data structure. The
verification function checks for many things. Any inconsistencies are reported back to the user,

with an error message explaining the exact place where the error was found, and the exact type of

the error. Using this information, the user can use the PERM TC edit tools to correct the errors.

NOTE:
The user may wish to use the PERM Log facilities (top-level commands) if
the error list is too long to remember easily. If a Log file is open, PERM will
write the error message not only to the screen, but also to the Log file. That
file can then be accessed (via DOS programs and utilities), for example, to
obtain a hard-copy.

Only verified Task Classes can be used to create system loads, the basic data structure

input to the Compute component of PERM.

Edit the Header of a Task Class (@@TEA)

This function permits the user to see and edit the header information of a currently
memory-resident Task Class. First, the list of currently active Task Classes is displayed, and the

user selects the desired one by moving the cursor up <Home> or down <End>, and then <Retum>

to select. The header menu is then presented, and the "name" and "author" fields are available for

editing. Other system information (time of last verify, etc.) is also displayed, but cannot be edited.

2-53

NOTE:
Task Class names should all be unique. Do not rename an existing Task
Class to agree with the name of another Task Class. If you do so, results are
indeterminate, and the Task Class structure will not pass a Load Verify.

Edit the Dependency Variables List for a Task Class (@TEB)

This function opens onto a sub-menu of functions to create, view, edit, and delete the

dependency variables (forward and backward) of a Task Class. These functions are individually

explained under their own headings. Generally, however, a Task will have both predecessors and

successors in the directed graph of Tasks that constitutes a Load. The potential for such

dependencies is built into the Task Class using variable names that are created and edited by these

functions. When a Task Class is instantiated during Load Definition, these variable names are then

replaced by the names of other instantiated Tasks -- in the same manner as Classes are instantiated

in Processor Ensemble definition.

Only the dependency variables of currently memory-resident Task Classes can be

operated on by these functions. Further, these Task Classes should agree with the memory-

resident (and verified) Processor Ensemble data structure.

Display the Dependency Variables for a Task Class (@@TEC)

This function prints to the screen a textual, ASCII listing of the current dependency
variables list for a Task Class. The user will first be prompted to select which of the currently

memory-resident Task Classes should be displayed (<Home> and <End> to move the cursor

through the list, and <Return> to select). The predecessor and successor variables, and their

associated Task Classes, are then scrolled to the screen, with the <c> key available to stop further

output if desired.

2-54

Create a Segment Class (for a Task Class) (@@TED)

A Task Class consists of several structures: the input and output dependency variables, a
list of segment classes, and a list of Threads created from those segment classes. In particular,

Threads can only be created from Segment Classes associated with the Task Class. If it is desired
to use a Segment definition in different Task Classes (say, because the Segment represents a

commonly used block of code, such as a sorting routine), the Segment must be re-created in both

Task Classes. Note that the "Import Segment Class" function makes this easy: once a Segment

Class has been created in one Task Class, its definition can be duplicated in other Task Classes.

There are several fields to be entered when a Segment Class is defined. These include:

(1) the Name of the Segment Class; (2) the Processor Class associated with it; (3) the Type of
segment (Application Code, Operating System, or Join); and (4) the coefficients that define the
Run Time for the segment as a function of Data Set size. Fields are provided for each of these, and

we will discuss them separately.

The user will first be prompted to select the Task Class with which the Segment Class (to

be created) is to be associated: <Home> and <End> move the cursor to the desired Task Class, and

<Return> selects it.

Next, a menu containing several fields is presented. The first field is the Segment Class

name. This should be chosen to generically describe the function performed by the segment, since
the segment can be instantiated on several different threads. Up to 32 characters can be entered,
including special characters. The Segment Class names within a Task Class should all be unique,

but the same Segment Class name can be used in different Task Classes without violating the

PERM verification rules. Pressing <Return> enters the name, and moves the cursor to the next

field.

Next, the user will be prompted to identify the Type of Segment Class -- Application

Code, Operating System, or Join. "Join" segments are used to specify inter-thread sequential
dependencies. Operating System segments are accounted for separately in computing system
overhead. The user uses <Home> and <End> to move the cursor to the desired field, and

<Return> to select it.

2-55

Next, the user will be prompted to select a Processor Class for the Segment Class. That
is, in building threads, only processors of the designated Processor Class will be available to "run"

segments of this Segment Class. The Processor Classes are taken from the verified Processor
Ensemble that must have been loaded before Task Class operations were begun. As usual,

<Home> and <End> move the cursor to the desired point, and <Return> selects it.

Finally, six numerical fields are provided at the bottom to specify the Run Time Transfer

Function. The meaning of these fields is explained on the menu, and their default values are

shown. Note, in particular, that these must be selected to agree with whatever units are chosen to
specify the data set size (number of bytes, number of tracks, number of records, etc.). PERM

assumes that the output of a Run Time Transfer Function is in Seconds. PERM will only accept

floating point values in the range 0.0 <= x <= 1.0 for the reduction factor; the remaining

coefficients are entered in floating point format.

Even after a field has been edited, the user can return to it for changes by using the

<Arrow> keys. Also, the menu itself can be exited at any time without modifying the Task Class

data structure by entering <ESC>. The only way to exit the menu, and create a permanent

Segment Class entry, is to move the cursor to the bottom-rightmost field (using <Arrow> keys or
successive <Return>s) and press <Return>. This completes the function, and returns control to

the Task Class Edit menu.

There are a number of other transfer functions that must be specified for a Segment Class
- one for each accessible Bus, and two for each Accessible Memory. These transfer functions are

entered using the Edit Segment Class functions (which, see). Since those transfer function

coefficients have default values, it is not necessary to explicitly edit them to pass Verification.

Edit a Segment Class (for a Task Class) (@@TEE)

The purpose of this function is to allow the user to edit both header information and

Transfer Function information for a Segment Class. It immediately opens onto a submenu of

available functions.

2-56

There are two primary purposes for this capability. The fi-st is the most important -- the

specification of Transfer Function coefficients for Accessible Busses and Memories. The

commands that pernit entering and editing those coefficients are accessed using this menu option.

The second is to make changes to existing Segment Class definitions, especially those that may

have been imported from other Task Classes (using the "Import Segment Class" capability).

Once a Segment Class has been instantiated on a Thread, the only editing that is permitted

is to the values of its Transfer Function coefficients. That is, its name, Type, and associated

Processor Class cannot be altered once a Segment belonging to the Class has been added to a

Thread.

Delete a Segment Class (from a Task Class) (@@TEF)

This function allows a previously Created (or Imported) Segment Class to be deleted

from a Task Class. This operation can only be performed if the Segment Class has not been

instantiated as a Segment on a Thread. (In general, the orly permitted editing of an instantiated

Segment Class is to the values of its Transfer Function coefficients.)

The user will first be asked to select the Task Class from which the Segment Class is to

be deleted (as usual, <Home> and <End> move the cursor, and <Return> selects). Then, the

Segment Classes will be displayed, and the one to be deleted is selected in the same manner. The

removal is immediate; no "confirm" is offered or required. The command can be exited at any time

without change to the Task Class data structure by entering <ESC>.

Display a Segment Class (from a Task Class) (@@TEG)

This command prints an ASCII text description of a Segment Class belonging to a Task

Class to the screen. Successive pages of the description are scrolled to the screen, and the output

can be terminated at any point using the <c> key.

2-57

The information displayed is one entry from the "Segment Table" for the Task Class. It

contains the following information:

Segment Class Name
Processor Class
Number of Instantiations
Segment Class Type (Join, OS, AC)
Transfer Function Coefficients

Run Time
Memory Size (one for each accessible memory variable)
Memory Bandwidth (one for each accessible memory
variable)
Bus Bandwidth (one for each accessible bus variable)

The user will first be prompted to select the Task Class from the list of Task Classes in

memory: <Home> and <End> move the cursor, and <Return> selects. Then, the list of Segment

Classes for that Task Class will be presented, and the one to be displayed is selected in the same

manner.

Import a Segment Class (From a Task Class, to a Task Class) (@C'TEH)

A Task Class consists of several structures: the input and output dependency variables, a

list of Segment Classes, and a list of Threads created from those Segment Classes. In particular,

Threads can only be created from Segment Classes associated with the Task Class. If it is desired

to use a Segment Class definition in different Task Classes (say, because the Segment represents a

commonly used block of code, such as a sorting routine), the Segment must be re-created in both

Task Classes. The "Import Segment Class" function makes this easy: once a Segment Class has

been created in one Task Class, its definition can be duplicated in other Task Classes.

Three things must be specified to this function: (1) the Task Class from which the

Segment Class is to be taken (the source); (2) the Task Class into which the Segment Class is to

be placed (the target); and (3) the Segment Class to be copied. These three are selected from

scrolling lists using (as usual) the <Home> and <End> keys to move the cursor, and the <Return>

key to select. Once executed, the Segment Class is added to the list of Segment Classes associated

with the Task Class, and can be edited and instantiated on Threads.

2-58

A possible use for this capability is to create a Task Class that consists only of Segment

Classes -- no Threads. This can then be treated as a Library of Segment Classes to be used by

other Task Classes that describe the execution Threads. This will ensure the consistency of

Segment Class properties used across multiple Task Classes.

It is not permitted to Import a Segment Class whose name agrees with a Segment Class

name already in the Task Class. This is consistent with the general PERM requirement for

uniqueness of names within a PERM structural entity.

Create a Thread (for a Task Class) (@@TEI)

The purpose of this command is to Create the header information for a Thread in a Task

Class. Four pieces of information are required: (1) the Task Class to which the Thread is to be

added; (2) the Processor Class (from the Processor Ensemble) on which the Thread is to run; (3)

the Instantiated Processor (belonging to that Processor Class) on which the Thread is to run; and

(4) the name of the Thread. The first three of these are chosen from successively presented

scrolling menus in the usual manner -- using <Home> and <End> keys to move the cursor, and

<Return> to select. Note that at most one Thread can be associated with each instantiated

processor; an attempt to create a second Thread will be detected as an error, and the user will be

returned to the Edit Task Class menu.

The fourth piece of information -- the Thread name -- is then entered in the menu

provided. Up to 32 characters are permitted, including special characters if desired. Thread names

within a Task Class must be unique; duplicate names will not pass the Task Class verify function.

Once a Thread has been created, it can be operated on using the Thread Editing functions provided.

Move a Thread to the Top of the Thread List (of a Task Class) (@@TEJ)

When editing Threads, a scrolling menu will be presented from which the Thread to be

edited can be selected (using the <Home>, <End> and <Return> keys in the usual manner). This

function moves the (name of the) chosen Thread to the top of the menu so that it can be selected

immediately (using <Return>) without having to move the cursor at all. Thus, it behaves with

regard to Thread names exactly as the Target command (from the top-level Task Class menu)

behaves with regard to Task Class names.

2-59

The user will first select the Task Class (using the <Home> and <End> keys to move the

cursor, and the <Return> key to select). Next, the currently active Threads belonging to that Task

Class are presented, and the target Thread is selected in the same manner.

Use of this function (together with the Target command) can reduce the number of key

strokes required in repetitive tasks involving the creation and editing of a Thread.

Edit a Thread (for a Task Class) (@@TEK)

The purpose of this command is enable the user to add Segments to a Thread (or, edit

them, or delete them). It opens onto a sub-menu that offers the commands that effect this

capability.

Delete a Thread (from a Task Class) (@@TEL)

This command enables a user to delete a Thread from a Task Class data structure. First,

the Task Class is selected from a scrolling menu (in the usual way, using the <Home> and <End>

keys to move the cursor, and <Return> to select). Then, the Thread to be deleted is chosen in the

same manner.

Once <Return> is pressed, the selected Thread is removed immediately; no "confirm" is

offered or requireo. However, the command can be exited at any time without changing the Task

Class data structure by entering <ESC>.

Display the Threads (for a Task Class) (@@@TEM)

The command prints to the screen an ASCII display of the Threads associated with the

selected Task Class. This includes the header information for each Thread as well as its list of

Segments. The information displayed is as follows:

Task Class Name and Header Data
Thread Table

For each Thread in the Task Class
Thread Name
Processor Name (instantiated) and Class
Segment List

2-60

For each Segment
Segment Name
Segment Class
Segment Type (Join, OS, AC)
For Join Segments,

Predecessor Thread and
Segment

The data is scrolled to the screen in pages, and the <c> key can be used to halt the display

at any point.

Copy one Thread to Another (in a Task Class) (@@TEN)

Often, an identical (or nearly identical) software sequence is performed on multiple
processors. In PERM terminology, this means that the Threads associated with those two
processors are (nearly) identical -- that is, that the same sequence of Segment Classes constitutes

the two Threads.

This command enables the user to copy the sequence of segments created for one Thread
directly onto another Thread. The only condition is that the Target Thread (the thread onto which
the Segment Sequence is to be copied) must not currently have any segments; if this is not already

the case, it can be caused by using the "Clear Thread" command.

The user specifies three things: (1) the Task Class in which the "copy" operation is to be
performed; (2) the Thread from which the Segments are to be copied (the Source); and (3) the
Thread to which the Segments are to be copied (the Target). These are selected from a sequence of
scrolling menus in the usual manner (<Home> and <End> to move the cursor, and <Return> to

select).

The following restrictions apply and are enforced by PERM. First, the Source and
Target must be associated with the same Processor Class. Second, the Target Thread must be

Clear (that is, must not have any Segments on it). Third, the two Threads must belong to the same

Task Class.

2-61

Once r, Segments have been copied, they can be edited using the "Edit Thread"

commandz,. eor example, their instantiation names can be changed, they can be deleted, new

Segments can be added or inserted, etc.

NOTE:
The user will want to verify that instantiated JOIN Segments copied using this
command retain their inter-thread dependencies. If not, they will have to be
edited to refl.ct the altered dependencies.

It is not necessary to rename the Segments copied from one Thread to another in this

way. Segment names may be identical across Threads (just as Segment Class names may be

identical across Task Classes); it is only necessary that all segments within a Thread have unique

names.

Clear a Thread (in a Task Class) (@@TEO)

This command causes all Segments associated with a Thread to be deleted. The Thread

Header information remains; only the Segments are lost. This can be used, for example, to prepare

a Thread to be the Target for a "Copy Thread" command.

The user selects both the Task Class and the Thread from scrolling menus in the usual

manner (<Home> and <End> to move the cursor, and <Return> to select). The command can be

exited at any time without altering the Task Class data structure by entering <ESC>.

NOTE:
No "confirm" is offered or required; once entered, the command immediately
deletes all Segments. Thus, the user is cautioned to judicious use of the Save
command (at the top level Task Class menu) before extensive editing is
employed.

Add an Input Dependency Variable (to a Task Class) (@@TEBA)

The input and output dependency variables serve as place-holders until the directed graph

of Tasks is created during Load Definition. Tht is, a Task Class can have any number of

predecessors (of specified Classes), as indicated by the Input Dependency Variables; and can have

any number of successors (of specified Classes), as indicated by the Output Dependency

Variables.

2-62

To create an Input variable, the user must specify three things: (1) the Task Class being

edited; (2) the name of the variable; and (3) the name of the Task Class to which the variable
belongs. When an instance of the Task Class (being edited) is created (during Load Definition),

the variable will be replaced by an instance of the Task Class (to which the variable belongs).

NOTE:
During Load Definition, PERM will permit an Input or Output Dependency
Variable to be replaced by the string "dummy". This matches all Task
Classes, and essentially means that there is no dependency for that particular
instantiation and that particular variable.

The Task Class (being edited) is selected from a scrolling menu in the usual manner
(<Home> and <End> keys move the cursor, and <Return> selects). The variable name and Task

Class name are then entered as (up to) 32-long ASCII strings, including special characters, if

desired.

NOTE:
The names of Input Dependency Variables should all be unique within a Task
Class. Failure to adhere to this will result in indeterminate behavior, and will
not pass the Task Class Verify function. Also, the Task Class to which the
variable belongs should be (by the time the Load Definition in executed) a
Verified Task Class. PERM will permit the use of Task Class names that are
not yet verified, or that are not even in memory. It will, however, note this
fact to the user when Verify is implemented. However, in Load Definition,
PERM is not so forgiving, and requires that the Task Classes associated with
the variables be, in fact, verified Task Classes currently in memory.

Edit an Input Dependency Variable (for a Task Class) (@@TEBB)

The list of Input Dependency Variables created using the Create command can be edited --
both the na.nes of these variables, and the Task Classes to which they belong. The user must

specify two things: (1) the Task Class being edited; and (2) the Input Dependency Variable (of that

Class) being edited. Both these are selected from scrolling menus in the usual manner (<Home>

and <End> to move the cursor, and <Return> to select). The menu containing the variable name

and its Task Class is then available for editing.

2-63

As usual, names can be up to 32 characters, including special characters. The Task Class

name should be the exact name of a verified Task Class (at the time Load Definition occurs -- see

below). The <Arrow> keys can be used to move the cursor to a particular character in the name

for change by overtyping; they can also be used to switch between the two fields. The command

can be exited at any time without changing the Task Class data structure by using the <ESC> key.

NOTE:
During Load Definition, PERM will permit an Input or Output Dependency
Variable to be replaced by the string "dummy". This matches all Task
Classes, and essentially means that there is no dependency for that particular
instantiation and that particular variable.

The names of Input Dependency Variables should all be unique within a Task
Class. Failure to adhere to this will result in indeterminate behavior, and will
not pass the Task Class Verify function. Also, the Task Class to which the
variable belongs should be (by the time the Load Definition in executed) a
Verified Task Class. PERM will permit the use of Task Class names that are
not yet verified, or that are not even in memory. It will, however, note this
fact to the user when Verify is implemented. However, in Load Definition,
PERM is not so forgiving, and requires that the Task Classes associated with
the variables be, in fact, verified Task Classes currently in memory.

Delete an Input Dependency Variable (from a Task Class) (@@TEBC)

This command will delete an Input Dependency Variable from a Task Class. The user
specifies two things: (1) the Task Class being edited; and (2) the Input Dependency Variable to be

deleted. Both are selected from scrolling menus in the usual manner (using <Home> and <End>
keys to move the cursor, and <Return> to select). No "confirm" is required or accepted; once the

command is executed, the variable is at once deleted from the Task Class data structure. However,

the command can be exited at any time without change to the data structure by using the <ESC>

key.

Add an Output Dependency Variable (to a Task Class) (@@TEBD)

The input and output dependency variables serve as place-holders until the directed graph

of Tasks is created during Load Definition. That is, a Task Class can have any number of

predecessors (of specified Classes), as indicated by the Input Dependency Variables; and can have

any number of successors (of specified Classes), as indicated by the Output Dependency

Variables.

2-64

To create an Output variable, the user must specify three things: (1) the Task Class being

edited; (2) the name of the variable; and (3) the name of the Task Class to which the variable
belongs. When an instance of the Task Class (being edited) is created (during Load Definition),

the variable will be replaced by an instance of the Task Class (to which the variable belongs).

NOTE:
During Load Definition, PERM will permit an Input or Output Dependency
Variable to be replaced by the string "dummy". This matches all Task
Classes, and essentially means that there is no dependency for that particular
instantiation and that particular variable.

The Task Class (being edited) is selected from a scrolling menu in the usual manner
(<Home> and <End> keys move the cursor, and <Return> selects). The variable name and Task

Class name are then entered as (up to) 32-long ASCII strings, including special characters, if

desired.

NOTE:
The names of Output Dependency Variables should all be unique within a
Task Class. Failure to adhere to this will result in indeterminate behavior, and
will not pass the Task Class Verify function. Also, the Task Class to which
the variable belongs should be (by the time the Load Definition is executed) a
Verified Task Class. PERM will permit the use of Task Class names that are
not yet verified, or that are not even in memory. It will, however, note this
fact to the user when Verify is implemented. However, in Load Definition,
PERM is not so forgiving, and requires that the Task Classes associated with
the variables be, in fact, verified Task Classes currently in memory.

Edit an Output Dependency Variable (for a Task Class) (@@TEBE)

The list of Output Dependency Variables created using the Create command can be edited
-- both the names of these variablks, and the Task Classes to which they belong. The user must

specify two things: (1) the Task Class being edited; and (2) the Output Dependency Variable (of

that Class) being edited. Both these are selected from scrolling menus in the usual manner
(<Home> and <End> to move the cursor, and <Return> to select). The menu containing the

variable name and its Task Class is then available for editing.

2-65

As usual, names can be up to 32 characters, including special characters. The Task Class

name should be the exact name of a verified Task Class (at the time Load Definition occurs -- see
below). The <Arrow> keys can be used to move the cursor to a particular character in the name

for change by overtyping; they can also be used to switch between the two fields. The command

can be exited at any time without changing the Task Class data structure by using the <ESC> key.

NOTE:
During Load Definition, PERM will permit an Input or Output Dependency
Variable to be replaced by the string "dummy". This matches all Task
Classes, and essentially means that there is no dependency for that particular
instantiation and that particular variable.

The names of Output Dependency Variables should all be unique within a
Task Class. Failure to adhere to this will result in indeterminate behavior, and
will not pass the Task Class Verify function. Also, the Task Class to which
the variable belongs should be (by the time the Load Definition in executed) a
Verified Task Class. PERM will permit the use of Task Class names that are
not yet verified, or that are not even in memory. It will, however, note this
fact to the user when Verify is implemented. However, in Load Definition,
PERM is not so.forgiving, and requires that the Task Classes associated with
the variables be, in fact, verified Task Classes currently in memory.

Delete an Output Dependency Variable (from a Task Class) (@@TEBF)

This command will delete an Output Dependency Variable from a Task Class. The user

specifies two things: (1) the Task Class being edited; and (2) the Output Dependency Variable to be

deleted. Both are selected from scrolling menus in the usual manner (using <Home> and <End>
keys to move the cursor, and <Return> to select). No "confirm" is required or accepted; once the
command is executed, the variable is at once deleted from the Task Class data structure. However,

the command can be exited at any time without change to the data structure by using the <ESC>

key.

Edit the Header of a Segment Class (for a Task Class) (@@TEEA)

This function enables the user to view and edit the Header information that was entered
when the Segment Class was Created (or Imported). All four fields -- name, Type, Processor

Class, and Run Time Transfer Function coefficients -- are editable, using the <Arrow> keys to

move between fields and among characters within a field.

2-66

he user selects the Task Class and the Segment Class to be edited from scrolling menus in

the usual manner (<Home> and <End> keys to move the cursor, and <Return> to select).

All the naming considerations that applied when the Segment Class was Created apply

here, as well. The first field is the Segment Class name. This should be chosen to generically

described the function performed by the segment, since the segment can be instantiated on several

different threads. Up to 32 characters can be entered, including special characters. The Segment

Class names within a Task Class should all be unique, but the same Segment Class name can be

used in different Task Classes without violating the PERM verification rules. Pressing <Return>

enters the name, and moves the cursor to the next field. The <Arrow> keys can be used to move

between fields without altering their contents.

Next, the user will be prompted to identify the Type of Segment Class -- Application

Code, Operating System, or Join. "Join" segments are used to specify inter-thread sequential

dependencies. Operating System segments are accounted for separately in computing system

overhead. The user uses <Home> and <End> to move the cursor to the desired field, and

<Return> to select it.

Next, the user will be prompted to select a Processor Class for the Segment Class. That

is, in building threads, only processors of the designated Processor Class will be available to "run"

segments of this Segment Class. The Processor Classes are taken from the verified Processor

Ensemble that must have been loaded before Task Class operations were begun. As usual,

<Home> and <End> move the cursor to the desired point, and <Return> selects it.

NOTE:
When a Segment Class is Created, Transfer Functions for all associated Bus
and Memory Variables are also created, and default values are assigned.
However, if a Segment Class is edited by changing the Processor Class to
which it belongs, those Associated Variables (and their Transfer Functions)
no longer have meaning. A similar situation arises if the Processor Class
(belonging to the Processor Ensemble) is edited subsequent to the Creation of
the Segment Class. In both these cases, no default values for the Transfer
Functions are created; the user is require to explicitly edit them and confirm
their new values -- even if these are 0, as will often be the case. To avoid
this, it may be preferable in some instances to simply delete the Segment
Class entirely and start over, using Create.

2-67

If any instances of a Segment Class have been created on Threads, the first
three fields of the Segment Class cannot be edited -- only the Run Time
Transfer Function coefficients. Thus, if it is desired (for example) to change
the Type of the Segment Class from Application Code to Operating System,
any Segments (on Threads) drawn from that Segment Class must be deleted
from their threads (before the editing occurs), and then reinserted (after the
editing is complete).

Finally, six numerical fields are provided at the bottom to specify the Run Time Transfer

Function. The meaning of these fields is explained on the menu, and their default values are

shown. Note, in particular, that these must be selected to agree with whatever units are chosen to

specify the data set size (number of bytes, number of tracks, number of records, etc.). The output

of the Run Time Transfer Function is assumed to be in Seconds. PERM will only accept floating

point values in the range 0.0 <= x <= 1.0 for the reduction factor; the remaining coefficients are

entered in floating point format.

Add a Memory Size Transfer Function (for a Task Class) (@@TEEB)

NOTE:
Ordinarily, this command should never be used. All operations on Transfer
Function coefficients can, in the usual course of things, be performed using
the "Edit Memory Requirements Function," <C>. The circumstances under
which this command might be of value are explained below, and they depend
on a more-than-superficial understanding of how PERM represents the Task
Class data structures internally. Before using this command, see if the
function you want to implement is not available using <C>. If it is, use <C>;
if not, return here, and continue reading.

When a Segment Class is Created, PERM automatically also creates Transfer Functions -

- one for every Accessible Bus variable in the associated Processor Class, and two (one for size

requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer

functions are created so as to automatically correctly agree with the Processor Class of the Segment

in both number and "type" (where "type" means variable name and Class).

In the ordinary course of things, this association between the Segment Class and the

Processor Class would not change, and neither would the properties of the Processor Class.

Thus, the Transfer Functions originally created should remain internally consistent: their value

might change, but the variable name and Class would not.

2-68

In can happen, however, that this correspondence between the "type" of the Transfer

Functions and the associated Processor Class is broken. This can happen in two ways. First, the

Processor Ensemble, itself, can be edited, and the variables list and their Classes changed. If this

happens, the list of Transfer Functions will no long agree, in variable name and Class, with the

Accessible Bus and Memory variables of the Processor Class.

Another way that the disagreement can arise is if the Processor Class of the Segment

Class is, itself, edited (using the Edit Segment Header function). In this case, the list of Accessible

Bus and Memory variables of the new Processor Class need no longer agree with the variables list

of the original Processor Class.

What this function is intended to do is to enable a knowledgeable user to create his own

list of Transfer Functions for each of the new variables. He can combine the "Add" function with

the "Delete" function to take away Transfer Functions for which variables no longer exist, and to

create Transfer Functions for variables that have been introduced, and that differ from the original

list of Transfer Functions created at the time the Segment Class itself was created.

In order to pass verification, the resulting list of Transfer Functions must have the following

properties:

(1) each transfer function is associated with the correct name and Class of
some Accessible Bus or Memory variable from the Processor Class
associated with the Segment Class.

(2) for every Accessible Bus variable in the Processor Class, there exists
exactly one Bus Bandwidth Transfer Function with the correct variable
name and the correct Bus Class.

(3) for every Accessible Memory variable in the Processor Class, there exist
exactly two Transfer Functions -- one for Memory Requirements, and
one for Memory Bandwidth -- each with the correct variable name and
the correct Memory Class.

Condition (1) says that every Transfer Function is associated with a variable from the

Segment's Processor Class. Conditions (2) and (3) say that every variable -- whether Bus or

Memory -- has exactly the right number and "type" of associated Transfer Functions.

2-69

Thus, any Transfer Function that fails to satisfy (1) - (3) can be deleted (using the

"Delete" commands: <D>, <G>, and <J>), and any that are missing can be added (using the

"Add" commands: , <E>, and <H>).

When an "Add" command is used, the user will be prompted to select the Task Class and

the Segment Class to be edited, using scrolling menus in the usual manner (<Home> and <End> to
move the cursor, and <Return> to select). Then three fields will be offered for editing. The first is

the name of an Accessible Resource variable - in this case, a memory variable. The second is the

Class of that variable. To pass verification, these must agree with a variable name and Class from
the associated Processor Class.

NOTE:
It is at this point that the "Add" function, , differs from the "Edit"
function, <C>. The edit function will present another scrolling menu to select
the accessible memory variable (and its Class) from the list created when the
Segment Class itself was created. In the "Add" function, the user enters this
information directly from the keyboard.

Third, the values of the Transfer Function coefficients must be entered. Their meaning is
fully explained on the menu itself. For Memory Requirement, the resulting units should be in

Bytes (as a function of Input Data Size).

As with all other PERM commands, this command can be exited at any time without

disturbing the Task Class data structure by entering <ESC>.

Edit a Memory Requirements Transfer Function (for a Task Class) (@@TEEC)

When a Segment Class is Created, PERM automatically also creates Transfer Functions -
- one for every Accessible Bus variable in the associated Processor Class, and two (one for size

requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer

functions are created so as to automatically correctly agree with the Processor Class of the Segment
in both number and "type" (where "type" means variable name and Class). Also, the Transfer

Function coefficients are assigned default values, chosen so that, if left unedited, the Transfer

Function effectively is null - it will make no demands on PERM resources.

2-70

- " • • III

When an instance of a Segment Class is instantiated on a Thread, the Accessible

Resource variables -- in this case, Accessible Memory variables -- are replaced with the "real",

instantiated entities that are accessible to the "real", instantiated processor associated with the

Thread. Then, as PERM runs in the computational phase, the Segments will make demands on

these resources as specified by the Transfer Functions and the input data size.

Because the default values of the Transfer Functions effectively render the demands on

the resource "null", the Transfer Function coefficients must be edited to reflect the actual behavior

of the software block of code being modeled. The purpose of this command is to enable editing of

Transfer Functions coefficients for Memory Requirements -- the amount of memory the Segment

will require when it is executed.

When the command is executed, the user will be prompted for three pieces of

information: (1) the Task Class being edited; (2) the Segment Class (within the Task Class) being

edited; and (3) the name of the Accessible Memory variable (from the list specified in the Processor

Class definition of the Processor Class associated with the Segment Class). In each case, selection

is made from a scrolling menu in the usual manner (<Home> and <End> to move the cursor, and

<Return> to select). A menu is then presented with an explanation of the six coefficients that
specify the Memory Requirements Transfer Function, and the user edits each in turn (using the

<Arrow> keys and <Return> to move between fields and enter data). The units for output by the

Transfer Function are Bytes. The command is completed (and the Task Class data structure is

updated) when the cursor in on the final field, and <Return> is entered. At any point, the user can

exit the command without modification to the Task Class data structure by entering <ESC>.

Delete a Memory Size Transfer Function (for a Task Class) (@@TEED)

NOTE:
Do not use this command to get rid of Transfer Functions that are known to
be "null". The default values for all Transfer Functions are set so that the
Function will have no effect during PERM execution. Deleting Transfer
Functions from the list will ordinarily cause the Task Class to fail verification,
since it is required that all Accessible Bus and Memory variables have
Transfer Functions, even if they do not contribute to resource utilization.

2-71

Ordinarily, this command should never be used. All operations on Transfer
Function coefficients can, in the usual course of things, be performed using
the "Edit Memory Requirements Function," <C>. The circumstances under
which this command might be of value are explained below, and they depend
on a more-than-superficial understanding of how PERM represents the Task
Class data structures internally. Before using this command, see if the
function you want to implement is not available using <C>. If it is, use <C>;
if not, return here, and continue reading.

When a Segment Class is Created, PERM automatically also creates Transfer Functions -
- one for every Accessible Bus variable in the associated Processor Class, and two (one for size
requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer

functions are created so as to automatically correctly agree with the Processor Class of the Segment

in both number and "type" (where "type" means variable name and Class).

In the ordinary course of things, this association between the Segment Class and the

Processor Class would not change, and neither would the properties of the Processor Class.

Thus, the Transfer Functions originally created should remain internally consistent: their value

might change, but the variable name and Class would not. Thus, there would be no need to Delete

a Transfer Function -- even a "Null" one. To do so would be to doom the Task Class data
structure to fail verification.

In can happen, however, that this correspondence between the "type" of the Transfer

Functions and the associated Processor Class is broken. This can happen in two ways. First, the

Processor Ensemble, itself, can be edited, and the variables list and their Classes changed. If this
happens, the list of Transfer Functions will no long agree, in variable name and Class, with the

Accessible Bus and Memory variables of the Processor Class.

Another way that the disagreement can arise is if the Processor Class of the Segment

Class is, itself, edited (using the Edit Segment Header function). In this case, the list of Accessible

Bus and Memory variables of the new Processor Class need no longer agree with the variables list

of the original Processor Class.

2-72

What this function is intended to do is to enable a knowledgeable user to create his own
list of Transfer Functions for each of the new variables. He can combine the "Add" function with

the "Delete" function to take away Transfer Functions for which variables no longer exist, and to

create Transfer Functions for variables that have been introduced, and that differ from the original

list of Transfer Functions created at the time the Segment Class itself was created.

In order to pass verification, the resulting list of Transfer Functions must have the

following properties:

(1) each transfer function is associated with the correct name and Class of
some Accessible Bus or Memory variable from the Processor Class
associated with the Segment Class.

(2) for every Accessible Bus variable in the Processor Class, there exists
exactly ,ae Bus Bandwidth Transfer Function with the correct variable
name and the correct Bus Class.

(3) for every Accessible Memory variable in the Processor Class, there exist
exactly two Transfer Functions -- one for Memory Requirements, and
one for Memory Bandwidth -- each with the correct variable name and
the correct Memory Class.

Condition (1) says that every Transfer Function is associated with a variable from the
Segment's Processor Class. Conditions (2) and (3) say that every variable -- whether Bus or

Memory -- has exactly the right number and "type" of associated Transfer Functions.

Thus, any Transfer Function that fails to satisfy (1) - (3) can be deleted (using the "Delete"

commands: <D>, <G>, and <1>), and any that are missing can be added (using the "Add"

commands: , <E>, and <H>).

When a "Delete" command is used, the user will be prompted to select the Task Class,

Segment Class, and Transfer Function (indicated by Accessible Memory variable) to be deleted,

using scrolling menus in the usual manner (<Home> and <End> to move the cursor, and

<Return> to select). The execution of the command immediately causes the Transfer Function to

be removed from the Task Class data structure; no "confirm" is offered or required. However, the

command can be exited at any time without modification to the Task Class by entering <ESC>.

2-73

Add a Memory I/O Transfer Function (for a Task Class) (@@TEEE)

NOTE:
Ordinarily, this command should never be used. All operations on Transfer
Function coefficients can, in the usual course of things, be performed using
the "Edit Memory Requirements Function," <F>. The circumstances under
which this command might be of value are explained below, and they depend
on a more-than-superficial understanding of how PERM represents the Task
Class data structures internally. Before using this command, see if the
function you want to implement is not available using <F>. If it is, use <F>;
if not, return here, and continue reading.

When a Segment Class is Created, PERM automatically also creates Transfer Functions -

- one for every Accessible Bus variable in the associated Processor Class, and two (one for size

requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer

functions are created so as to automatically correctly agree with the Processor Class of the Segment

in both number and "type" (where "type" means variable name and Class).

In the ordinary course of things, this association between the Segment Class and the

Processor Class would not change, and neither would the properties of the Processor Class.

Thus, the Transfer Functions originally created should remain internally consistent: their value

might change, but the variable name and Class would not.

In can happen, however, that this correspondence between the "type" of the Transfer

Functions and the associated Processor Class is broken. This can happen in two ways. First, the

Processor Ensemble, itself, can be edited, and the variables list and their Classes changed. If this

happens, the list of Transfer Functions will no long agree, in variable name and Class, with the

Accessible Bus and Memory variables of the Processor Class.

Another way that the disagreement can arise is if the Processor Class of the Segment

Class is, itself, edited (using the Edit Segment Header function). In this case, the list of Accessible

Bus and Memory variables of the new Processor Class need no longer agree with the variables list

of the original Processor Class.

What this function is intended to do is to enable a knowledgeable user to create his own

list of Transfer Functions for each of the new variables. He can combine the "Add" function with

the "Delete" function to take away Transfer Functions for which variables no longer exist, and to

2-74

create Transfer Functions for variables that have been introduced, and that differ from the original

list of Transfer Functions created at the time the Segment Class itself was created.

In order to pass verification, the resulting list of Transfer Functions must have the

following properties:

(1) each transfer function is associated with the correct name and Class of
some Accessible Bus or Memory variable from the Processor Class
associated with the Segment Class.

(2) for every Accessible Bus variable in the Processor Class, there exists
exactly one Bus Bandwidth Transfer Function with the correct variable
name and the correct Bus Class.

(3) for every Accessible Memory variable in the Processor Class, there exist
exactly two Transfer Functions -- one for Memory Requirements, and
one for Memory Bandwidth -- each with the correct variable name and
the correct Memory Class.

Condition (1) says that every Transfer Function is associated with a variable from the
Segment's Processor Class. Conditions (2) and (3) say that every variable -- whether Bus or
Memory -- has exactly the right number and "type" of associated Transfer Functions.

Thus, any Transfer Function that fails to satisfy (1) - (3) can be deleted (using the
"Delete" commands: <D>, <G>, and <J>), and any that are missing can be added (using the

"Add" commands: , <E>, and <H>).

When an "Add" command is used, the user will be prompted to select the Task Class and

the Segment Class to be edited, using scrolling menus in the usual manner (<Home> and <End> to
move the cursor, and <Return> to select). Then three fields will be offered for editing. The first is

the name of an Accessible Resource variable - in this case, a memory variable. The second is the
Class of that variable. To pass verification, these must agree with a variable name and Class from

the associated Processor Class.

NOTE:
It is at this point that the "Add" function, <H>, differs from the "Edit"
function, <I>. The "Edit" function will present another scrolling menu to
select the accessible memory variable (and its Class) from the list created
when the Segment Class itself was created. In the "Add" function, the user
enters this information directly from the keyboard.

2-75

Third, the values of the Transfer Function coefficients must be entered. Their meaning is

fully explained on the menu itself. For Memory I/O, the resulting units should be in Bytes (as a
function of Input Data Size).

As with all other PERM commands, this command can be exited at any time without
disturbing the Task Class data structure by entering <ESC>.

Edit a Memory I/O Transfer Function (for a Task Class) (@@TEEF)

When a Segment Class is Created, PERM automatically also creates Transfer Functions -
- one for every Accessible Bus variable in the associated Processor Class, and two (one for size

requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer
functions are created so as to automatically correctly agree with the Processor Class of the Segment

in both number and "type" (where "type" means variable name and Class). Also, the Transfer

Function coefficients are assigned default values, chosen so that, if left unedited, the Transfer
Function effectively is null -- it will make no demands on PERM resources.

When an instance of a Segment Class is instantiated on a Thread, the Accessible
Resource variables -- in this case, Accessible Memory variables -- are replaced with the "real",

instantiated entities that are accessible to the "real", instantiated processor associated with the

Thread. Then, as PERM runs in the computational phase, the Segments will make demands on

these resources as specified by the Transfer Functions and the input data size.

Because the default values of the Transfer Functions effectively render the demands on
the resource "null", the Transfer Function coefficients must be edited to reflect the actual behavior
of the software block of code being modeled. The purpose of this command is to enable editing of
Transfer Functions coefficients for Memory I/O -- the number of Bytes of Memory to be

transferred between the Processor and the Memory when the block of code is executed.

When the command is executed, the user will be prompted for three pieces of

information: (1) the Task Class being edited; (2) the Segment Class (within the Task Class) being

edited; and (3) the name of the Accessible Memory variahl-- ,from the list specified in the Processor
Class definition of the Processor Class associated with the Segment Class). In each case, selection

is made from a scrolling menu in the usual manner (<Home> and <End> to move the cursor, and

2-76

• ! I

<Return> to select). A menu is then presented with an explanation of the six coefficients that

specify the Memory I/O Transfer Function, and the user edits each in turn (using the keyboard,

<Arrow> keys and <Return> to move between fields and enter data). The units for output by the

Transfer Function are Bytes, and should include Reads and Writes for both data and instructions.

The user should also take into account cache memory local to the processor; the presence of cache

memory can reduce the number of references to main memory for many types of code. The

command is completed (and the Task Class data structure is updated) when the cursor located on

the final field, and <Return> is entered. At any point, the user can exit the command without

modification to the Task Class data structure by entering <ESC>.

Delete a Nemory 1/O Transfer Function (for a Task Class) (@@TEEG)

NOTE:
Do not use this command to get rid of Transfer Functions that are known to
be "null". The default values for all Transfer Functions are set so that the
Function will have no effect during PERM execution. Deleting Transfer
Functions from the list will ordinarily cause the Task Class to fail verification,
since it is required that all Accessible Bus and Memory variables have
Transfer Functions, even if they do not contribute to resource utilization.

Ordinarily, this command should never be used. All operations on Transfer
Function coefficients can, in the usual course of things, be performed using
the "Edit Memory I/O Function," <F>. The circumstances under which this
command might be of value are explained below, and they depend on a more-
than-superficial understanding of how PERM represents the Task Class data
structures internally. Before using this command, see if the function you
want to implement is not available using <F>. If it is, use <F>; if not, return
here, and continue reading.

When a Segment Class is Created, PERM automatically also creates Transfer Functions -

- one for every Accessible Bus variable in the associated Processor Class, and two (one for size

requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer

functions are created so as to automatically correctly agree with the Processor Class of the Segment

in both number and "type" (where "type" means variable name and Class).

In the ordinary course of things, this association between the Segment Class and the

Processor Class would not change, and neither would the properties of the Processor Class.

Thus, the Transfer Functions originally created should remain internally consistent: their value

2-77

might change, but the variable name and Class would not. Thus, there would be no need to Delete

a Transfer Function -- even a "Null" one. To do so would be to doom the Task Class data

structure to fail verification.

In can happen, however, that this correspondence between the "type" of the Transfer

Functions and the associated Processor Class is broken. This can happen in two ways. First, the

Processor Ensemble, itself, can be edited, and the variables list and their Classes changed. If this

happens, the list of Transfer Functions will no long agree, in variable name and Class, with the

Accessible Bus and Memory variables of the Processor Class.

Another way that the disagreement can arise is if the Processor Class of the Segment

Class is, itself, edited (using the Edit Segment Header function). In this case, the list of A ,;essible

Bus and Memory variables of the new Processor Class need no longer agree with the variables list

of the original Processor Class.

What this function is intended to do is to enable a knowledgeable user to create his own
list of Transfer Functions for each of the new variables. He can combine the "Add" function with

the "Delete" function to take away Transfer Functions for which variables no longer exist, and to

create Transfer Functions for variables that have been introduced, and that differ from the original

list of Transfer Functions created at the time the Segment Class itself was created.

In order to pass verification, the resulting list of Transfer Functions must have the following

properties:

(1) each transfer function is associated with the correct name and Class of
some Accessible Bus or Memory variable from the Processor Class
associated with the Segment Class.

(2) for every Accessible Bus variable in the Processor Class, there exists
exactly one Bus Bandwidth Transfer Function with the correct variable
name and the correct Bus Class.

(3) for every Accessible Memory variable in the Processor Class, there exist
exactly two Transfer Functions -- one for Memory Requirements, and
one for Memory Bandwidth -- each with the correct variable name and
the correct Memory Class.

2-78

Condition (I) says that every Transfer Function is associated with a variable from the

Segment's Processor Class. Conditions (2) and (3) say that every variable -- whether Bus or

Memory -- has exactly the right number and "type" of associated Transfer Functions.

Thus, any Transfer Function that fails to satisfy (1) - (3) can be deleted (using the

"Delete" commands: <D>, <G>, and <J>), and any that are missing can be added (using the

"Add" commands: , <E>, and <H>).

When a "Delete" command is used, the user will be prompted to select the Task Class,

Segment Class, and Transfer Function (indicated by Accessible Memory variable) to be deleted,

using scrolling menus in the usual manner (<Home> and <End> to move the cursor, and

<Return> to select). The execution of the command immediately causes the Transfer Function to
be removed from the Task Class data structure; no "confirm" is offered or required. However, the

command can be exited at any time without modification to the Task Class by entering <ESC>.

Add a Bus 1/O Transfer Function (for a Task Class) (@@TEEH)

NOTE:
Ordinarily, this command should never be used. All operations on Transfer
Function coefficients can, in the usual course of things, be performed using
the "Edit Bus I/O Function," <I>. The circumstances under which this
command might be of value are explained below, and they depend on a more-
than-superficial understanding of how PERM represents the Task Class data
structures internally. Before using this command, see if the function you
want to implement is not available using <I>. If it is, use <I>; if not, return
here, and continue reading.

When a Segment Class is Created, PERM automatically also creates Transfer Functions -
- one for every Accessible Bus variable in the associated Processor Class, and two (one for size

requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer

functions are created so as to automatically correctly agree with the Processor Class of the Segment

in both number and "type" (where "type" means variable name and Class).

2-79

In the ordinary course of things, this association between the Segment Class and the
Processor Class would not change, and neither would the properties of the Processor Class.

Thus, the Transfer Functions originally created should remain internally consistent: thei, value

might change, but the variable name and Class would not.

In can happen, however, that this correspondence between the "type" of the Transfer
Functions and the associated Processor Class is broken. This can happen in two ways. First, the
Processor Ensemble, itself, can be edited, and the variables list and their Classes changed. If this
happens, the list of Transfer Functions will no long agree, in variable name and Class, with the

Accessible Bus and Memory variables of the Processor Class.

Another way that the disagreement can arise is if the Processor Class of the Segment
Class is, itself, edited (using the Edit Segment Header function). In this case, the list of Accessible
Bus and Memory variables of the new Processor Class need no longer agree with the variables list

of the original Processor Class.

What this function is intended to do is to enable a knowledgeable user to create his own
list of Transfer Functions for each of the new variables. He can combine the "Add" function with

the "Delete" function to take away Transfer Functions for which variables no longer exist, and to
create Transfer Functions for variables that have been introduced, and that differ from the original

list of Transfer Functions created at the time the Segment Class itself was created.

In order to pass verification, the resulting list of Transfer Functions must have the

following properties:

(1) each transfer function is associated with the correct name and Class of
some Accessible Bus or Memory variable from the Processor Class
associated with the Segment Class.

(2) for every Accessible Bus variable in the Processor Class, there exists
exactly one Bus Bandwidth Transfer Function with the correct variable
name and the correct Bus Class.

(3) for every Accessible Memory variable in the Processor Class, there exist
exactly two Transfer Functions -- one for Memory Requirements, and
one for Memory Bandwidth -- each with the correct variable name and
the correct Memory Class.

2-80

Condition (1) says that every Transfer Function is associated with a variable from the
Segment's Processor Class. Conditions (2) and (3) say that every variable -- whether Bus or

Memory -- has exactly the right number and "type" of associated Transfer Functions.

Thus, any Transfer Function that fails to satisfy (1) - (3) can be deleted (using the
"Delete" commands: <D>, <G>, and <J>), and any that are missing can be added (using the

"Add" commands: , <E>, and <H>).

When an "Add" command is used, the user will be prompted to select the Task Class and

the Segment Class to be edited, using scrolling menus in the usual manner (<Home> and <End> to
move the cursor, and <Return> to select). Then three fields will be offered for editing. The first is
the name of an Accessible Resource variable -- in this case, a bus variable. The second is the Class

of that variable. To pass verification, these must agree with a variable name and Class from the

associated Processor Class.

NOTE:
It is at this point that the "Add" function, <H>, differs from the "Edit"
function, <1>. The "Edit" function will present another scrolling menu to
select the accessible bus variable (and its Class) from the list created when the
Segment Class itself was created. In the "Add" function, the user enters this
information directly from the keyboard.

Third, the values of the Transfer Function coefficients must be entered. Their meaning is

fully explained on the menu itself. For Bus I/O, the resulting units should be in Bytes (as a

function of Input Data Size).

As with all other PERM commands, this command can be exited at any time without

disturbing the Task Class data structure by entering <ESC>.

Edit a Bus i/O Transfer Function (for a Task Class) (@@TEEI)

When a Segment Class is Created, PERM automatically also creates Transfer Functions -

- one for every Accessible Bus variable in the associated Processor Class, and two (one for size

requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer
functions are created so as to automatically correctly agree with the Processor Class of the Segment

2-81

in both number and "type" (where "type" means variable name and Class). Also, the Transfer
Function coefficients are assigned default values, chosen so that, if left unedited, the Transfer

Function effectively is null - it will make no demands on PERM resources.

When an instance of a Segment Class is instantiated on a Thread, the Accessible

Resource variables -- in this case, Accessible Bus variables -- are replaced with the "real,

instantiated entities that are accessible to the "real", instantiated processor associated with the

Thread. Then, as PERM runs in the computational phase, the Segments will make demands on
these resources as specified by the Transfer Functions and the input data size.

Because the default values of the Transfer Functions effectively render the demands on
the resource "null", the Transfer Function coefficients must be edited to reflect the actual behavior

of the software block of code being modeled. The purpose of this command is to enable editing of
Transfer Functions coefficients for Bus I/O -- the number of Bytes of data to be sent by the

Processor on the Bus when the block of code is executed.

When the command is executed, the user will be prompted for three pieces of

information: (1) the Task Class being edited; (2) the Segment Class (within the Task Class) being
edited; and (3) the name of the Accessible Memory variable (from the list specified in the Processor

Class definition of the Processor Class associated with the Segment Class). In each case, selection

is made from a scrolling menu in the usual manner (<Home> and <End> to move the cursor, and

<Return> to select). A menu is then presented with an explanation of the six coefficients that
specify the Memory I/O Transfer Function, and the user edits each in turn (using the keyboard,

<Arrow> keys and <Return> to move between fields and enter data). The units for output by the
Transfer Function are Bytes; the number of Bytes divided by the Run Time of the Segment then
yields Bandwidth, which is the quantity for which PERM does accounting. Ordinarily, Bus

resource demands are specified for the sending process, not for the receiving process. The
command is completed (and the Task Class data structure is updated) when the cursor located on

the final field, and <Return> is entered. At any point, the user can exit the command without

modification to the Task Class data structure by entering <ESC>.

2-82

Delete a Bus I/O Transfer Function (for a Task Class) (@@TEEJ)

NOTE:
Do not use this command to get rid of Transfer Functions that are known to
be "null". The default values for all Transfer Functions are set so that the
Function will have no effect during PERM execution. Deleting Transfer
Functions from the list will ordinarily cause the Task Class to fail verification,
since it is required that all Accessible Bus and Memory variables have
Transfer Functions, even if they do not contribute to resource utilization.

Ordinarily, this command should never be used. All operations on Transfer
Function coefficients can, in the usual course of things, be performed using
the "Edit Bus I/O Function," <I>. The circumstances under which this
command might be of value are explained below, and they depend on a more-
than-superficial understanding of how PERM represents the Task Class data
structures internally. Before using this command, see if the function you
want to implement is not available using <I>. If it is, use <I>; if not, return
here, and continue reading.

When a Segment Class is Created, PERM automatically also creates Transfer Functions -
- one for every Accessible Bus variable in the associated Processor Class, and two (one for size

requirements, and one for I/O requirements) for each Accessible Memory variable. These transfer
functions are created so as to automatically correctly agree with the Processor Class of the Segment

in both number and "type" (where "type" means variable name and Class).

In the ordinary course of things, this association between the Segment Class and the
Processor Class would not change, and neither would the properties of the Processor Class.
Thus, the Transfer Functions originally created should remain internally consistent: their value
might change, but the variable name and Class would not. Thus, there would be no need to Delete
a Transfer Function -- even a "Null" one. To do so would be to doom the Task Class data

structure to fail verification.

It can happen, however, that this correspondence between the "type" of the Transfer
Functions and the associated Processor Class is broken. This can happen in two ways. First, the

Processor Ensemble, itself, can be edited, and the variables list and their Classes changed. If this
happens, the list of Transfer Functions will no long agree, in variable name and Class, with the

Accessible Bus and Memory variables of the Processor Class.

2-83

Another way that the disagreement can arise is if the Processor Class of the Segment

Class is, itself, edited (using the Edit Segment Header function). In this case, the list of Accessible

Bus and Memory variables of the new Processor Class need no longer agree with the variables list

of the original Processor Class.

What this function is intended to do is to enable a knowledgeable user to create his own

list of Transfer Functions for each of the new variables. He can combine the "Add" function with

the "Delete" function to take away Transfer Functions for which variables no longer exist, and to

create Transfer Functions for variables that have been introduced, and that differ from the original

list of Transfer Functions created at the time the Segment Class itself was created.

In order to pass verification, the resulting list of Transfer Functions must have the

following properties:

(1) each transfer function is associated with the correct name and Class of
some Accessible Bus or Memory variable from the Processor Class
associated with the Segment Class.

(2) for every Accessible Bus variable in the Processor Class, there exists
exactly one Bus Bandwidth Transfer Function with the correct variable
name and the correct Bus Class.

(3) for every Accessible Memory variable in the Processor Class, there exist
exactly two Transfer Functions -- one for Memory Requirements, and
one for Memory Bandwidth -- each with the correct variable name and
the correct Memory Class.

Condition (1) says that every Transfer Function is associated with a variable from the

Segment's Processor Class. Conditions (2) and (3) say that every variable -- whether Bus or

Memory -- has exactly the right number and "type" of associated Transfer Functions.

Thus, any Transfer Function that fails to satisfy (1) - (3) can be deleted (using the

"Delete" commands: <D>, <G>, and <J>), and any that are missing can be added (using the

"Add" commands: , <E>, and <H>).

2-84

When a "Delete" command is used, the user will be prompted to select the Task Class,

Segment Class, and Transfer Function (indicated by Accessible Bus variable) to be deleted, using

scrolling menus in the usual manner (<Home> and <End> to move the cursor, and <Return> to
select). The execution of the command immediately causes the Transfer Function to be removed

from !he Task Class data structure; no "confirm" is offered or required. However, the command

can be exited at any time without modification to the Task Class by entering <ESC>.

Edit a Thread Header (for a Task Class) (@@TEKA)

This command allows a user to change the name of a Thread. The processor, and its

class, cannot be edited once the Thread has been created. Only only way to perform such an

operation is to Create a new Thread (perhaps after deleting the existing one).

The user will be prompted for two pieces of information: (1) the Task Class to be edited;

and (2) the Thread name within that Task Class. These selections are made from scrolling menus

in the usual manner (<Home> and <End> to move the cursor, and <Return> to select). A menu is

then displayed, and the Thread Name field is available for editing. Usual PERM restrictions apply:

Thread names within a Task Class should all be unique, and up to 32 characters (including special

characters) are permitted.

The command can be exited without altering the Task Class data structure by entering

<ESC>.

Append a Segment (to a Thread, of a Task Class) (@@TEKB)

A Thread consists of a sequence of Segments. Each Segment belongs to a Segment

Class (of the same Processor Class as the processor associated with the Thread). Segments in the

Thread have their own names in addition to the name of the Segment Class to which they belong,

and they inherit the properties (Type, Transfer Functions) of their parent Segment Class. More

than one segment on a Thread (or between Threads) can belong to the same Segment Class.

This command adds a new segment to the bottom of the current list of Segments in the

Thread. "he user must specify three things: (1) The Task Class being edited; (2) the Thread within

that Class; and (3) the Segment Class of the Segment to be added. These selections are made from

2-85

scrolling menus in the usual fashion (<Home> and <End> to move the cursor, and <Return> to
select). Then, a menu is presented, and the user can enter the name of the Segment. The only
restriction is that Segment names within a Thread should all be unique. One approach is to include
the Number (= position) of the Segment as part of its name, but that is optional. Up to 32
characters are permitted, including special characters.

If the Type of the Segment is Application Code or Operating System, the command is
complete, and a segment with the designated name and Class is appended to the end of the Thread.
However, if the Segment is a Join Segment, two additional pieces of information are required.

The first is an offset time (default = 0.0) to enable the analyst to enforce a minimum start
time on the Join Segment's successor. The offset is always with relation to Task start time.

The second is to name .he Thread/Segment on which the Join Segment depends (that is,
whose completion is required before the Join segment can complete, and its successor begin). The
choice is made from scrolling menus. First, the other current Threads in the Task Class are
displayed; then, when the Thread is chosen, the list of Segments (by Segment Name) for that
Thread is displayed. The selection is made in the usual manner (<Home> and <End> to move the
cursor, and <Return> to select). This means that only Segments that have already been defmed
can be selected as predecessors of a Join Segment, and this can impose an order on the sequence in
which the Threads are created and edited.

Insert a Segment (into a Thread, of a Task Class) (@@TEKC)

This command enables an analyst to insert a Segment into an existing sequence of
Segments constituting a Thread. To perform this operation, four pieces of information are
required: (1) the Task Class to be edited; (2) the Thread within that Class; (3) the Segment Class
of the Segment to be inserted; and (4) the name of the Segment prior to which the Segment is to be
inserted. These choices are made using a sequence of scrolling menus in the usual manner
(<Home> and <End> to move the cursor, and <Return> to select).

2-86

p
Next, a menu is presented, and the user can enter the name of the Segment. The only

restriction is that Segment names within a Thread should all be unique. One approach is to include

the Number (= position) of the Segment as part of its name, but that is optional. Up to 32

characters are permitted, including special characters.

If the Type of the Segment is Application Code or Operating System, the command is

complete, and a segment with the designated name and Class is inserted at the designated position
in the Thread. However, if the Segment is a Join Segment, two additional pieces of information

are required.

The first is an offset time (default = 0.0) to enable the analyst to enforce a minimum start

time on the Join Segments successor. The offset is always with relation to Task start time.

The second is to name the Thread/Segment on which the Join Segment depends (that is,
whose completion is required before the Join segment can complete, and its successor begin). The

choice is made from scrolling menus. First, the other current Threads in the Task Class are

displayed; then, when the Thread is chosen, the list of Segments (by Segment Name) for that

Thread is displayed. The selection is made in the usual manner (<Home> and <End> to move the
cursor, and <Return> to select). This means that only Segments that have already been defined
can be selected as predecessors of a Join Segment, and this can impose an order on the sequence in

which the Threads are created and edited.

Edit a Segment (in a Thread, of a Task Class) (@@TEKD)

This function permits the user to change the name of a Segment in a Thread, and to alter

the minimum offset time and the predecessor Thread/Segment if the Segment is a Join Segment.

Three pieces of information are required: (1) the Task Class being edited; (2) the Thread within

that Class; and (3) the Segment (by Segment name) within that Thread. These selections are made

from scrolling menus in the usual manner (<Home> and <End> to move the cursor, and <Return>

to select). A menu is then presented that permits the user to edit the Segment Name. The usual

PERM restrictions apply: up to 32 characters, and Segment names within the Thread should be

unique.

2-87

If the Type of the Segment is Application Code or Operating System, the command is

complete. However, if the Segment is a Join Segment, two additional pieces of information can be

edited.

The first is the minimum offset time (enables the analyst to enforce a minimum start time

on the Join Segment's successor). The offset is always with relation to Task start time.

The second is the Thread/Segment on which the Join Segment depends (that is, whose
completion is required before the Join segment can complete, and its successor begin). The choice

is made from scrolling menus. First, the other current Threads in the Task Class are displayed;

then, when the Thread is chosen, the list of Segments (by Segment Name) for that Thread is

displayed. The selection is made in the usual manner (<Home> and <End> to move the cursor,

and <Return> to select). This means that only Segments that have already been defined can be
selected as predecessors of a Join Segment, and this can impose an order on the sequence in which

the Threads are created and edited.

Fields within the menu can be visited directly using the <Arrow> keys. Further, the
command can be exited at any time without change to the Task Class data structure by entering

<ESC>.

An important use of this Command is when a sequence of Segments is copied from one

Thread to another. Often, the analyst will want to rename some of the Segments, and will also
want to modify the dependency structure of the Join Segments (if any).

Delete a Segment (from a Thread, of a Task Class) (@@TEKE)

This command allows a Segment to be deleted from the list of Segments constituting a

Thread. Three pieces of information are required: (1) the Task Class to be edited; (2) the Thread

within the Task Class; and (3) the name of the Segment to be deleted. The user is prompted for
this information on a sequence of scrolling menus, and the selection is made in the usual manner

(<Home> and <End> to move the cursor, and <Return> to select). As soon as the final <Return>

is entered, the selected Segment is immediately deleted from the list. No "confkm" is offered or

required.

I

It is perfectly permissible to delete a Segment from the middle of the list of Segments.

Display the Segment List (for a Thread, of a Task Class) (@@TEKF)

Use of this command scrolls to the screen the list of Segments belonging to the selected

Thread. The information includes:

Thread Name
Processor Name (instantiated) and Class
Segment List

For each Segment
Segment Name
Segment Class
Segment Type (Join, OS, AC)
For Join Segments,

Predecessor Thread and
Segment

Two pieces of information are required: (1) the Task Class, and (2) the Thread within the

Class. The user is prompted for the selection from scrolling menus, and the selection is made in

the usual manner (<Home> and <End> keys to move the cursor, and <Return> to select). The

data is presented on the screen by pages, with <c> available to stop the display at any time.

2.3.1.2.3 Help Files for System Load Operations

Load Operations (@@L)

This top-level command opens onto a set of sub-menus that permit the user to assemble

and verify a System Load suitable for input to the PERM Compute component.

NOTE:
The Load menu requires that a validated Processor Ensemble and zero or
more validated Task Classes be in memory. The validation date of the Task
Classes should be later than the validation date of the Processor Ensemble. If
these data structures are not already in memory when Load is executed, the
Load operations will not function. To get them into memory, Processor
Ensemble operations (Load, or Create) and Task Class operations (Load, or
Create) must be exercised.

2-89

The PERM commands are primarily for data entry. The analyst should
already have created coherent Processor Ensemble and Task Class models,
including mnemonic naming conventions, before interacting with the PERM
user interface.

Create a System Load (@@LC)

PERM only supports one System Load in memory at a time. There are two ways in

which a System Load can be placed into memory: (1) via the Create command; or (2) using the

Load command to load the data structure into memory from disk. Neither command will work if a

System Load data structure already exists in memory. That data structure must first be removed

(using the Remove command); then Create or Load can be used.

The Create command does nothing but create a Header for the Load. A menu is

presented with three fields: (1) the name of the System Load; (2) the author; and (3) the maximum

(modeling) run time the Load is permitted to achieve. The first two fields are PERM standard: 32

characters including special characters, with <Arrow> keys to move between fields, and <Return>

to enter.

The third field is entered as floating point, and expresses the time (in modeling seconds)

at which the PERM compute phase should stop processing. That is, during Compute, a "current

time" pointer is kept to indicate how far through the Tasks and Threads the processing has

proceeded. PERM will use the "maximum time" value as a ceiling beyond which this pointer

cannot proceed. The units of this parameter are Seconds.

As with other PERM commands, this one can be exited without having any effect by

using the <ESC> key at any point. The command itself executes when the <Return> key is

entered while the cursor is in the bottom field.

Edit a System Load (@@LE)

This command opens onto a submenu that provides functions to instantiate Tasks (from

Task Classes) and define their data size values and inter-task dependencies. A System Load data

structure must be in memory when this command is executed -- either from use of the Create

command, or from use of the Load command.

2-90

Remove a System Load from Memory (@@TR)

This command clears memory of the current System Load data structure. Since only one

such data structure can be in memory at a time, it requires no further input from the user; no
"confumn" is required or accepted.

NOTE:
Care should be used with this command, since it results in the loss of the data
structure. If there is any possibility that the data may be wanted for later use,
it should first be saved to permanent storage using the Save command.

Display a System Load Data Structure (@@LD)

This command prints to the terminal an abbreviated ASCII account of the current System

Load data structure. This includes Header information followed by a list of all instantiated Tasks

and their forward (Output) and backward (Input) dependencies. A complete listing, including the

Processor Ensemble description and a Task Class description for all Tasks is available through the
Print command. The <C> key can be used at any time to stop the listing and exit the command.

Load a System Load Data Structure from Disk (@@LL)

This command works together with the Save command to allow the user to Save and
Restore data structures to and from permanent storage on disk. The user names the file from
which the data is to be loaded. A full DOS path name, including drive and directory, can be used.

If omitted, PERM will use the default directory (the directory from which PERM was executed).

The file must have been created using the Save command. PERM checks to ensure that
the contents of the file do, indeed, constitute a Load data structure. Otherwise, it writes an error

message, and awaits further action by the user. It responds similarly if it cannot find or open the

named file.

2-91

Save a System Load Data Structure to Disk (@@LS)

This command works together with the Load command to enable the user to Save and

Restore a Load data structure to and from permanent storage. It can be used, for example, when

an editing session must be interrupted; the saved data can then later be restored (using Load), and

work can continue. Similarly, when a complete PERM model is achieved, it can (and should) be

saved so that it can be revisited and modified as appropriate during an engineering study.

If the System Load is complete and verified, the file created by this command can be used

as input to CPERM.

The user will be prompted for the name of the file to use to store the data. A full DOS

path name can be used, including drive and directory path. If this is omitted, PERM will use the

default directory (the directory the user was in when PERM was executed). If PERM cannot open

the file, an error message will be returned. Also, note that if a file of the same name already exists,

it will be over-written (and hence, lost) when this command is executed.

NOTE:
There is an important difference between the Save command and the Print
command. The Save command writes a binary copy of the PERM data
structure to the file -- a copy which can later be loaded back into memory, and
on which PERM operations will work. The Print command, on the other
hand, writes a human-readable ASCII file of the data structure. This can then
be reviewed and edited, but it cannot be loaded back into memory for
operation by PERM. If you wish to save your work for later use -- use Save.
If you wish to look at your work in ASCII form, use Print.

Print the System Load Data Structure (@@LP)

This command prints to a user-selected file an ASCII version of the full System Load

data structure. The file can then be operated on by DOS utilities and programs -- for example, to

route the file to a printer, or to edit or review it using a word processor. The contents include:

* System Load Header information;

* a complete listing for the Processor Ensemble, including Processor,
Memory and Bus Class definitions and instantiations; and

2-92

for each instantiated Task, a complete listing for the associated Task
Class, including Segment Classes and Threads.

The user will be prompted for the name of the file to use to store the data. A full DOS

path name can be used, including drive and directory path. If this is omitted, PERM will use the

default directory (the directory the user was in when PERM was executed). If PERM cannot open

the file, an error message will be returned. Also, note that if a file of the same name already exists,

it will be over-written (and hence, lost) when this command is executed.

NOTE:

There is an important difference between the Save command and the Print
command. The Save command writes a binary copy of the PERM data
structure to the file -- a copy which can later be loaded back into memory, and
on which PERM operations will work. The Print command, on the other
hand, writes a human-readable ASCII file of the data structure. This can then
be reviewed and edited, but it cannot be loaded back into memory for
operation by PERM. If you wish to save your work for later use -- use Save.
If you wish to look at your work in ASCII form, use Print.

Verify a System Load Data Structure (@@LV)

This command validates the internal consistency of a complete System Load.

Inconsistencies generate error messages which identify for the user the type and location of the

error. Only a verified System Load can be input to the PERM Compute component. Since both

Processor Ensemble and Task Class data structures have previously been verified, any errors

should be due to mis-matches between the Task Class of a dependency variable and the Class of

the instantiated Task that is assigned to the variable.

Edit the Header of a System Load (@@LEA)

This command allows the user to review or edit the header information that was entered

when the System Load was first Created (or last edited). Fields for editing include the name of the

System Load, the author, and the maximum model time (entered as floating point, in Seconds;

exceeding this model time causes the PERM Compute phase to exit). As usual, the <Arrow> keys

move the cursor between fields and to characters within a field for over-typing. The <Return> key

2-93

records the data, and a <Return> on the final field causes the command to execute, recording the
changes in the System Load data structure. The <ESC> key can be used to exit the command at
any point without altering the System Load data structure.

Create a Random Variable (@@LEB)

[This capability, which supports a Monte Carlo version of PERM, is not currently
implemented.]

Edit a Random Variable (@@LEC)

[This capability, which supports a Monte Carlo version of PERM, is not currently

implemented.]

Delete a Random Variable (@@LED)

[This capability, which supports a Monte Carlo version of PERM, is not currently
implemented.]

Instantiate a Task (@@LEE)

This command creates a instance of a Task Class. The user selects the Task Class to be

instantiated, and then assigns a name to the instance. The selection of the Task Class is from a
scrolling list of the Task Classes currently in memory (<Home> and <End> move the cursor, and

<Return> selects). A menu is then presented to allow the user to enter the Task name. The names
of all Tasks within a System Load should be unique; failure to adhere to this rule will cause the

System Load to fail verification. The name may be up to 32 characters, including special

characters.

Once the Task has been created, it can be edited to specify the values of the predecessor

and successor Task dependencies.

2-94

Edit the Header of an Instantiated Task (@@LEF)

The only field for editing in an instantiated Task is its name. The user selects the Task to

the edited from a scrolling menu of the currently instantiated Tasks (<Home> and <End> move the

cursor, and <Return> selects). A menu is then presented for editing. The command can be exited

without change to the System Load data structure by entering <ESC>. Thus, the command can be

used to review the Header information (including, for example, the Task Class of the instantiated

Task).

Edit an Input Dependency (@@LEG)

A System Load consists of a directed graph of instantiated Tasks. Heuristically, in the

Compute phase of PERM, this means that a Task cannot begin execution until all its immediate

predecessors (its Input Dependencies) have been satisfied. This connectivity -- forward and

backward -- between nodes must be entered by the analyst. This is accomplished in the following

manner.

Each Task belongs to a Task Class, and inherits the properties of that Task Class. In

particular, each Task Class has been assigned Input and Output Dependency variables. These act

as "place-holders", and each one must be replaced by the name of an instantiated Task during

System Load definition. To express the same idea in another way, the "generic" forward and

backward connectivity provided by the variables is "instantiated" by assigning to each cori',ctivity

variable the name of an instantiated Task.

NOTrE:
It will be apparent that there is redundancy in specifying both the forward
(Output) and backward (Input) Task connectivity patterns. This redundancy
is an artifact of PERM's current prototype status. PERM does not verify
whether or not the connectivity pattern specifies a directed graph without
cycles. Failure to adhere to this rule can result in deadlock or looping during
the PERM compute phase.

The Input and Output Dependency variables that were created for the Task Class are,

themselves, associated with Task Classes. That is, only Tasks belonging to the same Task Class

as the variable can permissibly be assigned to that variable. The System Load Verify function

checks this property.

2-95

The purpose of this command, then, is to enable the user to establish the backward (that

is, Input) dependencies for an instantiated Task. This is done variable-by-variable; that is, for each
input variable in the Task Class of the instantiated Task being edited, the user specifies the name of

an instantiated (or, to be instantiated) Task.

When the command is executed, the user must first specify two things: (1) the name of

the instantiated Task whose input connectivity is to be edited; and (2) the name of the Input

Dependency variable (belonging to the Task Class of that Task) whose values is to be specified.
These are selected from scrolling menus in the usual manner (<Home> and <End> keys to move

the cursor, and <Return> to select). A menu containing one editable field -- the name of the Task

to be assigned to the variable -- is then presented. The name should agree exactly with the name of

an instantiated (or, to be instantiated) Task. During verify, PERM will check to ensure that the
Class of the named Task agrees with the Class of the variable to which it was assigned.

NOTE:
To provide some flexibility, PERM provides a "wild card" capability. The
character string "dummy" (all lower-case) matches all Task Classes, and
effectively tells the Compute phase of PERM that, in this instantiation of the
Task, no Input dependency is required. For example, this enables a Task that
appears in the midst of the directed graph (with both predecessors and
successors) to share a Task Class with a Task that heads the graph (no
predecessors) or that terminates the graph (no successors).

Edit an Output Dependency (@@LEH)

A System Load consists of a directed graph of instantiated Tasks. Heuristically, in the

Compute phase of PERM, this means that a Task cannot begin execution until all its immediate
predecessors (its Input Dependencies) have been satisfied. This connectivity -- forward and

backward -- between nodes must be entered by the analyst. This is accomplished in the following

manner.

Each Task belongs to a Task Class, and inherits the properties of that Task Class. In

particular, each Task Class has been assigned Input and Output Dependency variables. These act

as "place-holders", and each one must be replaced by the name of an instantiated Task during

System Load definition. To express the same idea in another way, the "generic" forward and

2-96

backward connectivity provided by the variables is "instantiated" by assigning to each connectivity

variable the name of an instantiated Task.

NOTE:
It will be apparent that there is redundancy in specifying both the forward
(Output) and backward (Input) Task connectivity patterns. This redundancy
is an artifact of PERM's current prototype status. PERM does not verify
whether or not the connectivity pattern specifies a directed graph without
cycles. Failure to adhere to this rule can result in deadlock or looping during
the PERM compute phase.

The Input and Output Dependency variables that were created for the Task Class are,

themselves, associated with Task Classes. That is, only Tasks belonging to the same Task Class

as the variable can permissibly be assigned to that variable. The System Load Verify function
checks this property.

The purpose of this command, then, is to enable the user to establish the forward (that is,

Output) dependencies for an instantiated Task. This is done variable-by-variable; that is, for each
Output variable in the Task Class of the instantiated Task being edited, the user specifies the name

of an instantiated (or, to be instantiated) Task.

When the command is executed, the user must first specify two things: (1) the name of

the instantiated Task whose input connectivity is to be edited; and (2) the name of the Output
Dependency variable (belonging to the Task Class of that Task) whose values is to be specified.

These are selected from scrolling menus in the usual manner (<Home> and <End> keys to move

the cursor, and <Return> to select). A menu containing one editable field -- the name of the Task

to be assigned to the variable -- is then presented. The name should agree exactly with the name of
an instantiated (or, to be instantiated) Task. During verify, PERM will check to ensure that the
Class of the named Task agrees with the Class of the variable to which it was assigned.

NOTE:
To provide some flexibility, PERM provides a "wild card" capability. The
character string "dummy" (all lower-case) matches all Task Classes, and
effectively tells the Compute phase of PERM that, in this instantiation of the
Task, no Output dependency is required. For example, this enables a Task
that appears in the midst of the directed graph (with both predecessors and
successors) to share a Task Class with a Task that heads the graph (no
predecessors) or that terminates the graph (no successors).

2-97

Delete an Instantiated Task (@@LEI)

This command deletes an instantiated Task from the System Load data structure. The

user is prompted to select the Task to be deleted from a scrolling menu of the currently instantiated
Tasks (<Home> and <End> to move the cursor, and<Return> to select). No "confirm" is required
or accepted, but the user can exit the command without affecting the System Load data structure by

entering <ESC>.

Clear (the Instantiated Tasks from) a System Load (@@LEJ)

This command immediately deletes all currently instantiated Tasks from the System Load

data structure. Its effect is as if the Delete Task command had been applied separately to each

instantiated Task. The resulting state is like that of a Load immediately after it is created, but
before any Tasks have been instantiated for it. The command takes effect immediately, and no
"confirm" is required or accepted. Thus, the same cautions that apply to the Remove command (on

the main Load menu) apply here: if there is any possibility that the data currently in the System

Load data structure will be needed later, it should first be Saved to disk (using the Save command

from the top level menu).

Load data structure will be needed later, it should first be Saved to disk (using the Save
command from the top level menu).

2.3.1.2.4 Miscellaneous Commands

Open a Log File (@0)

This command enables the user to Log (that is, print) all screen activity, in ASCII form,
to a file of his choosing. That is, from the point at which the Open Log File command is issued
until the Close Log File command is issued (or PERM is exited), a record will be made in the file

of any text that PERM writes to the screen. Key strokes and menu manipulations are not recorded
- only messages that scroll to the screen.

2-98

The kinds of information that might be useful include:

* error messages from the Verify functions; and

* copies of the lower-level Display commands (e.g., Display thread,
P" play Instantiations).

The latter are useful, since the PERM Print function gives a complete listing of the entire

data structure (Processor Ensemble, Task Class, or System Load). If only a portion of the

structure -- that offered by a lower-level Display command -- is wanted, then the Log File can be

used for that purpose.

The user will be prompted for the name of the DOS file to be opened, and to which the

messages will be printed. A full DOS path name, including drive and directory, can be used. If

this is omitted, PERM will use the default directory (the directory from which PERM was

executed). If PERM cannot open the file, an error message is printed. If the file already exists,

PERM will over-write it, and its contents will be lost. Logging will continue until either the Close

Log File command is issued, or until PERM is exited.

Close the Log File (@C)

If the user has opened a Log file using the Open Log File command, this command can

be used to close it. All logging to that file ceases. No user input is required.

Exit PERM (@Q)

This command causes PERM to exit, and return to the DOS prompt in the directory from

which PERM was executed.

NOTE:
All data currently in memory is lost. If there is any possibility that these data
structures -- Processor Ensemble, Task Class, or System Load -- will be
needed at some future time, they should be saved to permanent storage using
the Save commands in the <P>, <T>, of <L> sub-menus.

No "confirm" is required or accepted. Once <Return> is entered, PERM is
immediately exited, and all data structures are lost.

2-99

!MM

2.3.2 CPERM

2.3.2.1 Running CPERN - In order to execute CPERM, do the following:

1. Place yourse!f in a directory. This will be your default directory. Make
sure that both the files cperm.hlp and cperm.ndx are in this directory.
Also, if the file cperm.exe or the file created during IPERM of a verified
System Load is not in this directory, make sure you know where they
are, including their full DOS path name.

2. Enter cperm.exe, including its full DOS path if it is not in your current,
default directory.

3. When you exit CPERM, you will find that three new files have been
created, with extensions: .INX, .PE, and .EHF. These files will be
needed by DPERM if you wish to display the data.

2.3.2.2 Help Files for CPERM

Load a System Load Data Structure into Memory (@@L)

Before any other Compute operations can take effect, a System Load data structure (as

created by the Save command under the Load Operations menu in the PERM initialization phase)
must be loaded into memory. The user enters the name of that file. A full DOS path name can be

used, including drive and directory; otherwise, PERM will use the default directory -- the directory
from which PERM was executed. If PERM cannot open the file, or if the file does not contain a

recognizable System Load data structure, an error message is displayed, and PERM waits for

further user action.

Verify the System Load Data Structure (@@V)

Once a System Load data structure has been loaded into memory using the Load

command, it must be verified for internal consistency. This is done even if the structure was

previously verified in the Load Operations menu of the initialization phase of PERM. Any errors

detected by the verification function are printed to the screen. The <C> key can be used to exit the

display and return to the menu. If errors are found, they must first be corrected by exiting the
compute phase of PERM, and returning to the initialization phase of PERM. Only a verified

System Load data structure can be used by the PERM compute operation.

2-100

Compute (@@C)

This command causes the resource utilization statistics associated with the System Load

data structure to be computed and stored to permanent files for display by the Display phase of

PERM. The user will be required to identify the output fil!s, and will need to remember this

identification information so that it can be re-entered when PERM display routines are run.

The file identification information for this command is different from that for many other

PERM commands. In particular, the usei cannot specify a full DOS path name, and cannot use

any extension. The reason is that PERM will actually create three files for use in Display, and

these files must (I) reside in the default directory, and (2) have the proper extensions.

The user will be prompted for a file identifier -- up to eight ASCII alphanumeric

characters acceptable to DOS as a file name. The compute command will then use this identifier as

the prefix for three different files with ext ,-.sions .INX, .PE, and .EHF, respectively.

EXAMPLE:

The user executes CPERM from the DOS file

c:permrun

When executing the <C> command, in response to the prompt, he enters the
file name prefix

TRACKING

When the Compute command is complete, three files will have been created in
the c:\permrun directory:

TRACKING.INX
TRACKING.PE
TRACKING.EHF

These three files must reside in the default directory when the Display phase
of PERM (DPERM) is executed, and the user will again be prompted for the
(up to) eight character prefix (in this example, TRACKING).

2-101

Administrative Commands (@@A)

This command opens onto a submenu that controls the log file and the scrolling of

CPERM operational status to the screen.

Open Log File (@@AA)

This command opens a user-selected DOS file to which is written all messages to the
screen. Thus, for example, if the user chooses to have the Event Display set to "ON", then not

only will the events be written to the screen, they will also be written to the log file. In this way,
the event history can be examined at leisure, in hard-copy.

The user will be prompted for a DOS file name. A full DOS path can be used, including
drive and directories; if this is omitted, the default directory will be used. If the named file cannot

be opened, the user will be notified with an error message, and CPERM will await further
instruction. If the names file already exists, it will be over-written, and its contents lost.

Close Log File (@@AB)

This command closes the log file opened by the Open Log File command. No additional
user input is required. Once the command is issued, screen output is no longer routed to the file.

Also, the file is automatically closed when CPERM is exited, whether or not the Close File

command has been issued.

Event Display On (@@AC)

This command is one of a pair of switches. In the "ON" condition, which is the default,
the model time of each event in the Event History File is scrolled to the screen (if the "Paged"

switch is on, the scrolling is done a screenful at a time; otherwise, the data scrolls continuously).

Each record also contains the name of the segment that generated the event, and its processor.

NOTE:
The default is to "ON". Thus, no action is necessary if the user wants the
events scrolled to the screen.

2-102 I

Event Display Off (@@AD)

This switch causes no event data to be scrolled to the screen. Since the default is to

"ON", this switch must be exercised if no event data output is desired.

Transition Display On (@@AE)

This switch causes the state transitions of the Finite State Automata that drives CPERM to

be printed to the screen, in the same manner that the events are printed when the Event Display

switch is "ON". If both switches are "ON", then both sets of data are interspersed and sent to the

screen in a time-ordered sequence. This data is primarily intended for debug purposes, and should

not be of interest to most users.

NOTE:
The default for this switch is "OFF". Thus, the user must exercise this
command in order to have the data for review.

Transition Display Off (@@AF)

This switch disables the scrolling to the screen of the Finite State Automata transition

data. Since the default for this switch is already "OFF", it is only necessary to exercise this

command if its companion, "ON", switch has previously been exercised.

Display Paging On (@@AG)

There are two ways in which the data from the previous two switches (Events and

Transitions) can be scrolled to the screen: a page at a time, (with the standard <c> key to cantel

output); and, continuously. The paged option, which is set by using this command, enables the

user to examine the current screenful before proceeding to the next. The other option is to have the

data continuously scrolled to the screen. Continuous scrolling is the default, so it is not necessary

to use this command unless the user wants to examine the data a page at a time.

2-103

Display Paging Off (@@AH)

There are two ways in which the data from the previous two switches (Events and
Transitions) can be scrolled to the screen: a page at a time, (with the standard <c> key to cancel

output); and, continuously. This command selects the "continuously scrolled" option, and is the
default. The data will move past too quickly for review. However, if the "Open Log" command
has been previously exercised, the data will also be routed to the log file for more leisurely perusal

at a later time.

NOTE:
Paging "OFF" is the system default. Thus, if the user wants continuous
scrolling, he need take no action. This command is only needed if the
"Paging" option has been previously selected, and now it is desired to return
to the default.

Remove the System Load Data Structure (@R)

This command clears memory of the currently resident System Load data structure so that

another one can be loaded in. No user input is required.

Exit the PERM Compute Phase (@Q)

This command causes PERM to exit, and returns the user to the DOS prompt from which

PERM was executed. No "confirm" is offered or accepted.

2.3.3 DPERM

2.3.3.1 Running DPERM - In order to execute DPERM, do the following things:

1. Place yourself in a DOS directory. This will be your default directory.
Make sure that both the file dperm.hlp and dperm.ndx are in this
directory. Also, make sure that there are three files with the same name
but different extensions: .INX, .PE, and .EHF. These should have
been created by CPERM, and (if necessary) moved or copied into your
default directory. If the file dperm.exe is not in this directory, make
sure you know where it is, including its full DOS path name.

2. Enter dperm.exe, including its full DOS path name if it is not already in
your current directory.

2-104

I

2.3.3.2 Help Files for DPERNI

Set Print Driver (@P)

This command informs PERM of the type of Printer attached to your PC/AT. PERM

assumes this printer is attached to the output port LPTI. It uses this output port to drive all

Graphics hardcopy outputs, and the purpose of this command is to match the Printer Driver to the

type of Printer being used.

The user selects from the available drivers in the usual manner, using <Home> and

<End> to move the cursor, and <Return> to select.

Load Display Data From Disk (@L)

The Display phase of PERM requires files that have been produced by the Compute

phase, and a file naming convention has been built into the software to facilitate this hand-off. In

particular, the Display component of PERM requires that three files with specified DOS extension

be resident in the default directory when DPERM is executed. The file names for these three files

all agree, and are entered by the user. The extensions, however, must be exactly: .INX, .PE, and

.EHF. The Display software itself adds these extensions, and searches for and Reads the resulting

files. During the Compute phase of PERM, the user was similarly prompted for and extension

less DOS file name, and it was this name that PERM used to create the three files (in the default

directory). Now, these files are being read back into memory for use by the Display component.

EXAMPLE:

The user executes CPERM from the DOS file

c:'permrun

When executing the <C> command, in response to the prompt, he enters the
file name prefix

TRACKING

2-105

When the Compute command is complete, three files will have been created in
the c:.\perm_run directory:

TRACKING.INX
TRACKING.PE
TRACKING.EHF

These three files must reside in the default directory when the Display phase
of PERM (DPERM) is executed. When the Load <L> command is executed,
the user is prompted for the (up to) eight character prefix (in this example,
TRACKING). It is up to the user to remember the eight character extension
less file name originally entered during the Compute phase of PERM. The
three files, with the correct extensions, are then Read back into memory for
use by Display.

Remove Display Data From Memory (@R)

This command clears memory of the current PERM model being examined so that

another can be loaded, if desired. No user input is required.

Display PERM Resource Utilization Data (@D)

This command opens onto a sequence of sub-menus that provide the capability to

examine the performance and resource utilization data generated by the PERM modeling capability.

Four types of data are provided:

* a system-wide history of all segment activity on all processors;

* the subset of the history file that relates to a single processor;

* the resource utilization profile for any bus or memory; and

* for any bus or memory, its utilization by any selected processor.

For all four types, the user can specify a sub-interval of time over which data is to be
displayed. And, in addition, for the last two types of displays, the user can generate graphical

output, both to the screen and to the printer.

Detailed explanations of these capabilities are provided with the commands that perform

them.

2-106

Exit the PERM Display Phase (@Q)

The command terminates PERM software activity, and returns the user to the DOS
prompt. No further user input is required; in particular, no "confirm" is offered or accepted.

Display Event List (@@DE)

This command opens onto a sub-menu which allows the user to select whether output
should be directed to the screen or to a DOS disk file. Also, the user will be able to choose the

time interval over which the data should be displayed.

During the Compute phase of PERM, a record is made of the following events during the

course of the simulation:

* the start and end of each segment, including segment run time and
resource utilization as derived from the Transfer Functions; and

i the start and end of each Task.

The purpose of this command is to display (or print) this file in ASCII form for review
by the user. Since all other PERM displays are derived from this file, all data about system
behavior is contained here (perhaps implicitly). Thus, if the user wants to verify the behavior of
the system at or around a critical time value, for example, he has access to the full "raw" data set

produced by PERM.

The data output by this command consists of the following:

I. A Header that names
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author
- the System Load Epoch (maximum end time)
- the start and end times selected by the user when the command was entered

2. For each Segment Boundary Event (the start or end of a segment):
- the Type of the segment following the event (Application Code, OS, Join)
- the time of the event
- the duration of the segment following the event
- the name and Class of that segment

2-107

the Task and Task Class of that segment
the Thread to which that segment belongs
for each memory resource
-- the name and Class of the memory
-- the amount of memory used, as a percent of total capacity, both

preceding and following the boundary event
-- the memory bandwidth, as a percent of total bandwidth, both

preceding and following the boundary event

NOTE:
Memory bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Memory I/O
of the segment (in Bytes, derived from the Memory I/O Transfer Function).
Thus, PERM assumes that the memory references are evenly spread across
the run time of the segment.

- for each bus resouce
-- the name and Class of the bus
-- the amount of bus bandwidth utilized, as a percent of total bandwidth

available, both preceding and following the boundary event.

NOTE:
Bus bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Bus I/O of
the segment (in Bytes, derived from the Bus I/O Transfer Function). Thus,
PERM assumes that the bus utilization is evenly spread across the run time of
the segment.

3. For each Task Start or End
- the name and Class of the Task
- the time at which the event occurs

Note that, for segment boundary events, resource utilization data is reported for both sides of the

event -- that is, for both the segment that has just ended and for the segment that is just beginning.

Print the Event List to a File (@@DEF)

During the Compute phase of PERM, a record is made of the following events during the

course of the simulation:

the start and end of each segment, including segment run time and
resource utilization as derived from the Transfer Functions; and

the start and end of each Task.

2-108 I

The purpose of this command is to print this file in ASCI form to a DOS file for review
by the user. Since all other PERM displays are derived from this file, all data about system
behavior is contained here (perhaps implicitly). Thus, if the user wants to verify the behavior of

the system at or around a critical time value, for example, he has access to the full "raw" data set

produced by PERM.

The data output by this command consists of the following:

1. A Header that names
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author
- the System Load Epoch (maximum end time)
- the start and end times selected by the user when the command was entered

2. For each Segment Boundary Event (the start or end of a segment):
- the Type of the segment following the event (Application Code, OS, Join)
- the time of the event
- the duration of the segment following the event
- the name and Class of that segment
- the Task and Task Class of that segment
- the Thread to which that segment belongs
- for each memory resource

-- the name and Class of the memory
-- the amount of memory used, as a percent of total capacity, both

preceding and following the boundary event
-- the memory bandwidth, as a percent of total bandwidth, both

preceding and following the boundary event

NOTE:
Memory bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Memory 1/0
of the segment (in Bytes, derived from the Memory I/0 Transfer Function).
Thus, PERM assumes that the memory references are evenly spread across
the run time of the segment.

- for each bus resource
-- the name and Class of the bus
-- the amount of bus bandwidth utilized, as a percent of total bandwidth

available, both preceding and following the boundary event.

2-109

NOTE:
Bus bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Bus I/O of
the segment (in Bytes, derived from the Bus I/O Transfer Function). Thus,
PERM assumes that the bus utilization is evenly spread across the nn time of
the segment.

3. For each Task Start or End
- the name and Class of the Task
- the time at which the event occurs

Note that, for segment boundary events, resource utilization data is reported for both

sides of the event -- that is, for both the segment that has just ended and for the segment that is just

beginning.

When the command is executed, the user will be prompted for the name of the file to

which the data is to be written. A full DOS path name, including drive and directory, can be used.

If omitted, PERM will use the default directory -- the directory from which PERM was executed.

If PERM cannot open the file, and error message is displayed, and PERM waits for further action

by the user. If the named file already exists, it will be over-written, and its contents lost.

Once the file name has been entered, the interval start and end times must be entered.

These are entered as floating point numbers into a menu provided for this purpose. The default

start time is 0.; the default end time is the Epoch length (as specified during System Load definition

in the initialization phase of PERM). Both the new start and end times must lie in this interval, and

the new end time must be greater than the new start time. Failure to adhere to these rules will

generate an error message, and the user can either try again or exit the command, using <ESC>.

Print the Event List to the Screen (@@DES)

During the Compute phase of PERM, a record is made of the following events during the

course of the simulation:

the start and end of each segment, including segment run time and
resource utilization as derived from the Transfer Functions; and

the start and end of each Task.

2-110

n ! I II I

The purpose of this command is to print this file in ASCII form to the screen for review

by the user. As usual, the data is scrolled a page at a time, and the <C> key can be used to stop the

data output and return to the menu. Since all other PERM displays are derived from this file, all

data about system behavior is contained here (perhaps implicitly). Thus, if the user wants to verify

the behavior of the system at or around a critical time value, for example, he has access to the full
"raw" data set produced by PERM.

The data output by this command consists of the following:

1. A Header that names
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author
- the System Load Epoch (maximum end time)
- the start and end times selected by the user when the command was entered

2. For each Segment Boundary Event (the start or end of a segment):
- the Type of the segment following the event (Application Code, OS, Join)
- the time of the event
- the duration of the segment following the event
- the name and Class of that segment
- the Task and Task Class of that segment
- the Thread to which that segment belongs
- for each memory resource

-- the name and Class of the memory
-- the amount of memory used, as a percent of total capacity, both

preceding and following the boundary event
-- the memory bandwidth, as a percent of total bandwidth, both

preceding and following the boundary event

NOTE:
Memory bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Memory 1/0
of the segment (in Bytes, derived from the Memory 1/0 Transfer Function).
Thus, PERM assumes that the memory references are evenly spread across
the nn time of the segment.

for each bus resource
-- the name and Class of the bus
-- the amount of bus bandwidth utilized, as a percent of

total bandwidth available, both preceding and following the boundary
event.

2-111

NOTE:

Bus bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Bus I/O of
the segment (in Bytes, derived from the Bus I/O Transfer Function). Thus,
PERM assumes that the bus utilization is evenly spread across the run time of
the segment.

3. For each Task Start or End
- the name and Class of the Task
- the time at which the event occurs

Note that, for segment boundary events, resource utilization data is reported for both

sides of the event -- that is, for both the segment that has just ended and for the segment that is just

beginning.

The user will be prompted for the interval start and end times. These are entered as

floating point numbers into a menu provided for this purpose. The default start time is 0.; the

default end time is the Epoch length (as specified during System Load definition in the initialization

phase of PERM). Both the new start and end times must lie in this interval, and the new end time

must be greater ilian the new start time. Failure to adhere to these rules will generate an error

message, and the user can either try again or exit the command, using <ESC>.

Display the Event List for a Processor (@@DD)

This command opens onto a sub-menu which allows the user to select whether output

should be directed to the screen or to a DOS disk file. Also, the user will be able to choose the

time interval over which the data should be displayed.

During the Compute phase of PERM, a record is made of the following events during the

course of the simulation:

the start and end of each segment, including segment run time and
resource utilization as derived from the Transfer Functions; and

* the start and end of each Task.

2-112

The purpose of this command is to display (or print) the segments events relating to a
particular processor, as well as summary information on processor utilization by segment Type

(Application Code, Operating System, or waiting to synchronize in a Join).

The data output by this command consists of the following:

I1. A Header that names
- the name of the Processor being examined
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author
- the System Load Epoch (maximum end time)
- the start and end times selected by the user when the command was entered

2. For each Segment Boundary Event (the start or end of a segment):
- the Type of the segment following the event (Application Code, OS, Join)
- the time of the event
- the duration of the segment following the event
- the name and Class of that segment
- the Task and Task Class of that segment
- the Thread to which that segment belongs
- for each memory resource

-- the name and Class of the memory
-- the amount of memory used, as a percent of total capacity, both

preceding and following the boundary event
-- the memory bandwidth, as a percent of total bandwidth, both

preceding and following the boundary event

NOTE:
Memory bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Memory 1/O
of the segment (in Bytes, derived from the Memory I/O Transfer Function).
Thus, PERM assumes that the memory references are evenly spread across
the run time of the segment.

for each bus resource
-- the name and Class of the bus
-- the amount of bus bandwidth utilized, as a percent of the total

bandwidth available, both preceding and following the boundary
event.

2-113

NOTE:
Bus bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Bus I/O of
the segment (in Bytes, derived from the Bus I/O Transfer Function). Thus,
PERM assumes that the bus utilization is evenly spread across the run time of
the segment.

3. A summary of Processor Activity during the selected time interval,
including
- the name of the Processor
- the time interval selected by the user
- the Compute file from which the data was drawn
- the total time, and percent of time, spent in

-- Application Code segments
-- Operating System segments
-- Join segments

4. A summary of Processor Activity during the entire Epoch interval,
including
- the name of the Processor
- the time interval selected by the user
- the Compute file from which the data was drawn
- the total time, and percent of time, spent in

-- Application Code segments
-- Operating System segments
-- Join segments

Print Event List or a Processor to a File (@@DDF)

During the Compute phase of PERM, a record is made of the following events during the

course of the simulation:

the start and end of each segment, including segment run time and
resource utilization as derived from the Transfer Functions; and

the start and end of each Task.

The purpose of this command is to print an ASCII version of the segment boundary

events relating to a particular processor, as well as summary information on processor utilization

by segment Type (Application Code, Operating System, or waiting to synchronize in a Join), to a

DOS file for review by the user.

2-114

I

The data output by this command consists of the following:

I. A Header that names
- the name of the Processor being examined
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author
- the System Load'Epoch (maximum end time)
- the start and end times selected by the user when the command was entered

2. For each Segment Boundary Event (the start or end of a segment):
- the Type of the segment following the event (Application Code, OS, Join)
- the time of the event
- the duration of the segment following the event
- the name and Class of that segment
- the Task and Task Class of that segment
- the Thread to which that segment belongs
- for each memory resource

-- the name and Class of the memory
-- the amount of memory used, as a percent of
-- the memory bandwidth, as a percent of total bandwidth, both

preceding and following the boundary event

NOTE:
Memory bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Memory 1/0
of the segment (in Bytes, derived from the Memory I/O Transfer Function).
Thus, PERM assumes that the memory references are evenly spread across
the run time of the segment.

- for each bus resource
-- the name and Class of the bus
-- the amount of bus bandwidth utilized, as a percent of total bandwidth

available, both preceding and following the boundary event.

NOTE:
Bus bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Bus I/O of
the segment (in Bytes, derived from the Bus I/O Transfer Function). Thus,
PERM assumes that the bus utilization is evenly spread across the run time of
the segment.

3. A summary of Processor Activity during the selected time interval,
including
- the name of the Processor
- the time interval selected by the user
- the Compute file from which the data was drawn
- the total time, and percent of time, spent in

2-115

-- Application Code segments
-- Operating System segments
-- Join segments

4. A summary of Processor Activity during the entire Epoch
interval, including

the name of the Processor
the time interval selected by the user
the Compute file from which the data was drawn
the total time, and percent of time, spent in
-- Application Code segments
-- Operating System segments
- - Join segments

When the command is executed, the user will be prompted for the name of the f'le to
which the data is to be written. A full DOS path name, including drive and directory, can be used.

If omitted, PERM wiji use the default directory -- the directory from which PERM was executed.
If PERM cannot open the file, and error message is displayed, and PERM waits for further action
by the user. If the named file already exists, it will be over-written, and its contents lost.

Once the file name has been entered, the interval start and end times must be entered.
These are entered as floating point numbers into a menu provided for this purpose. The default
start time is 0.; the default end time is the Epoch length (as specified during System Load definition
in the initialization phase of PERM). Both the new start and end times must lie in this interval, and
the new end time must be greater than the new start time. Failure to adhere to these rules will
generate an error message, and the user can either try again or exit the command, using <ESC>.

Print Event List for a Processor to the Screen (@@DDS)

During the Compute phase of PERM, a record is made of the following events during the

course of the simulation:

the start and end of each segment, including segment run time and
resource utilization as derived from the Transfer Functions; and

* the start and end of each Task.

2-116

The purpose of this command is to print an ASCII version of the segment boundary

events relating to a particular processor, as well as summary information on processor utilization

by segment Type (Application Code, Operating System, or waiting to synchronize in a Join), to the
screen for review by the user. As usual, the data is scrolled to the screen a page at a time. The

user can stop the data output, and return to the menu, by using the <C> key.

The data output by this command consists of the following:

1. A Header that names
- the name of the Processor being examined
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author
- the System Load Epoch (maximum end time)
- the start and end times selected by the user when the command was entered

2. For each Segment Boundary Event (the start or end of a segment):
- the Type of the segment following the event (Application Code, OS, Join)
- the time of the event
- the duration of the segment following the event
- the name and Class of that segment
- the Task and Task Class of that segment
- the Thread to which that segment belongs
- for each memory resource

-- the name and Class of the memory
-- the amount of memory used, as a percent of total capacity, both

preceding and following the boundary event
-- the memory bandwidth, as a percent of total bandwidth, both

preceding and following the boundary event

NOTE:
Memory bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Memory I/O
of the segment (in Bytes, derived from the Memory 1/0 Transfer Function).
Thus, PERM assumes that the memory references are evenly spread across
the run time of the segment.

for each bus resource
-- the name and Class of the bus
-- the amount of bus bandwidth utilized, as a percent of total bandwidth

available, both preceding and following the boundary event.

2-117

NOTE:
Bus bandwidth is obtained by dividing the Run Time of the segment (in
Seconds, derived from the Run Time Transfer Function) into the Bus I/O of
the segment (in Bytes, derived from the Bus I/O Transfer Function). Thus,
PERM assumes that the bus utilization is evenly spread across the run time of
the segment.

3. A summary of Processor Activity during the selected time
interval, including
- the name of the Processor
- the time interval selected by the user
- the Compute file from which the data was drawn
- the total time, and percent of time, spent in

-- Application Code segments
-- Operating System segments
-- Join segments

4. A summary of Processor Activity during the entire Epoch interval,
including
- the name of the Processor
- the time interval selected by the user
- the Compute file from which the data was drawn
- the total time, and percent of time, spent in

-- Application Code segments
-- Operating System segments
-- Join segments

The user will be prompted for the interval start and end times. These are entered as

floating point numbers into a menu provided for this purpose. The default start time is 0.; the

default end time is the Epoch length (as specified during System Load definition in the initialization

phase of PERM). Both the new start and end times must lie in this interval, and the new end time

must be greater than the new start time. Failure to adhere to these rules will generate an error

message, and the user can either try again or exit the command, using <ESC>.

Display the Total Resource Use Profile (@@DR)

The purpose of this command is to display the usage of any system resource -- bus or

memory -- over time. The user will be able to select text or graphics mode. If text mode is

selected, the data can be routed either to the screen or to a user-selected DOS file. If graphics is

selected, the display will be presented on the screen. The user will then have the option of printing

it to an attached printer (see the "Select Print Driver" command, <P>, at the top level menu).

2-118

The user will specify one of three types of resource utilization to be displayed,

corresponding to the three types of resource Transfer Functions:

- Memory Capacity
- Memory L/O bandwidth
- Bus I/O bandwidth

Then the Class and Name of the resource (memory or bus) must be selected. Finally, the

time interval must be selected. Details of this process are discussed with the commands on the next

lower-level menu.

Internally, PERM divides the total EPOCH interval into 500 distinct bins, and then

samples the resource utilization (for every processor) at each bin. This command produces the

sum of those values across processors; the Processor/Resource command shows the utilization of

the resource by any given processor. The textual display prints out the resource utilization values,

as a percent of total resource available, for each time bin. Selecting a sub-interval of time

effectively selects a contiguous subset of these bins. In the graphical displays, these values are

displayed on a 2-dimensional plot, value-vs-time, over the selected time interval. The plot is

automatically scaled to the screen size. In the textual display, the actual bin start and end times,

and values, are printed out -- either to the screen, or to a user-selected DOS file. The contents of a

textual display are as follows:

1. A header that identifies
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory -- being

examined
- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to which the resource

belongs)
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author

2. For each time bin falling within the selected time interval
- the number of the interval (I <= # <= 500)
- the start and end time of the interval
- the value of resource utilization in the interval, as a percentage of

total resource available

2-119

If the graphical display is chosen, the graph of value-vs-time is labeled with the following

data:
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory -- being

examined
- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to which the resource

belongs), called the resource Threshold; it corresponds to 100% on the
vertical axis

- the Compute file from which the data was drawn
- the Processor Ensemble name

In addition, the axes are labeled with their appropriate units values.

Print a Resource Utilization Profile (to a DOS File) (@@&DRF)

Internally, PERM divides the total EPOCH interval into 500 distinct bins, and then

samples the resource utilization (for every processor) at each bin. This command produces the

sum of those values across processors; the Processor/Resource command shows the utilization of

the resource by any given processor. An ASCII version of the resource utilization values, as a

percent of total resource available, for each time bin, is written to a user-selected DOS file.

Selecting a sub-interval of time effectively selects a contiguous subset of these bins. The contents

of a textual file are as follows:

1. A header that identifies
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory -- being

examined
- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to which the resource

belongs)
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author

2. For each time bin falling within the selected time interval
- the number of the interval (I <= # <= 500)
- the start and end time of the interval
- the value of resource utilization in the interval, as a percentage of total

resource available

2-120

When the command is executed, the user will be prompted for the name of the file to
which the data is to be written. A full DOS path name, including drive and directory, can be used.
If omitted, PERM will use the default directory -- the directory from which PERM was executed.

If PERM cannot open the file, and error message is displayed, and PERM waits for further action
by the user. If the named file already exists, it will be over-written, and its contents lost.

Next, the user must supply the following information: (1) the type of resource to be
examined (memory capacity, memory I/0 bandwidth, or bus bandwidth); (2) the Class of resource
(that is, Memory Class or Bus Class from the Processor Ensemble); (3) the instantiated name of
the resource from that Class; and (4) the start and end times of the interval over which data is

wanted.

The first three of these are selected from scrolling menus in the usual manner: <Home>
and <End> to move the cursor, and <Returi> to select.

The interval start and end times are entered as floating point numbers into a menu
provided for this purpose. The default start time is 0.; the default end time is the Epoch length (as
specified during System Load definition in the initialization phase of PERM). Both the new start
and end times must lie in this interval, and the new end time must be greater than the new start
time. Failure to adhere to these rules will generate an error message, and the user can either try

again or exit the command, using <ESC>.

Print a Resource Utilization Profile (to the Screen) (@@DRS)

Internally, PERM divides the total EPOCH interval into 500 distinct bins, and then
samples the resource utilization (for every processor) at each bin. This command produces the
sum of those values across processors; the Processor/Resource command shows the utilization of
the resource by any given processor. An ASCII version of the resource utilization values, as a
percent of total resource available, for each time bin, is written to the screen. As usual, the data is
scrolled a page at a time, with the <C> key being available to stop data output and return to the
menu. Selecting a sub-interval of time effectively selects a contiguous subset of the time bins for
display. The contents of a textual file are as follows:

2-121

1. A header that identifies
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory -- being

examined
- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to which the resource

belongs)
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author

2. For each time bin falling within the selected time interval
- the number of the interval (1 <= # <= 500)
- the start and end time of the interval
- the value of resource utilization in the interval, as a

percentage of total resource available

The user must supply the following information: (1) the type of resource to be examined

(memory capacity, memory I/O bandwidth, or bus bandwidth); (2) the Class of resource (that is,
Memory Class or Bus Class from the Processor Ensemble); (3) the instantiated name of the
resource from that Class; and (4) the start and end times of the interval over which data is wanted.

The first three of these are selected from scrolling menus in the usual manner: <Home> and

<End> to move the cursor, and <Return> to select.

The interval start and end times are entered as floating point numbers into a menu
provided for this purpose. The default start time is 0.; the default end time is the Epoch length (as
specified during System Load definition in the initialization phase of PERM). Both the new start

and end times must lie in this interval, and the new end time must be greater than the new start
time. Failure to adhere to these rules will generate an error message, and the user can either try

again or exit the command, using <ESC>.

Graph a Resource Utilizzion Profile (@@DRG)

The purpose of this command is to present a graphical display of the usage of any system

resource -- bus or memory -- over time.

2-122

Internally, PERM divides the total EPOCH interval into 500 distinct bins, and then

samples the resource utilization (for every processor) at each bin. This command produces the

sum of those values across processors; the Processor/Resource command shows the utilization of

the resource by any given processor. Selecting a sub-interval of time effectively selects a

contiguous subset of these bins. In the graphical displays, these values are presented in a

2-dimensional plot, value-vs-time, over the selected time interval. The plot is automatically scaled

vo the screen size. The graph of value-vs-time is labeled with the following data:

- the resource type: memory capacity, memory I/O bandwidth, or bus
bandwidth

- the instantiated name of the particular resource -- bus or memory -- being
examined

- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to which the resource

belongs), called the resource Threshold; it corresponds ..to 100% on the
vertical axis

- the Compute file from which the data was drawn
- the Processor Ensemble name

In addition, the axes are labeled with their appropriate units values.

The user must supply the following information: (1) the type of resource to be examined

(memory capacity, memory I/O bandwidth, or bus bandwidth); (2) the Class of resource (that is,

Memory Class or Bus Class from the Processor Ensemble); (3) the instantiated name of the

resource from that Class; and (4) the start and end times of the interval over which data is wanted.

The first three of these are selected from scrolling menus in the usual manner: <Home> and

<End> to move the cursor, and <Return> to select.

The interval start and end times are entered as floating point numbers into a menu

provided for this purpose. The default start time is 0.; the default end time is the Epoch length (as

specified during System Load definition in the initialization phase of PERM). Both the new start

and end times must lie in this interval, and the new end time must be greater than the new start

time. Failure to adhere to these rules will generate an error message, and the user can either try

again or exit the command, using <ESC>.

2-123

When the graphical display has been drawn on the screen, the user will have the option of

printing a hardcopy of it to an attached printer. PERM assumes the printer is mounted on port

LPTI, and the print driver must have been select from the top-level Print Driver command so as to

match the internal driver to the printer. The <P> key is used to cause the printing to occur.

Display the Resource Use Profile for a Processor (@@DP)

The purpose of this command is to display the usage by a particular processor of any

system resource -- bus or memory -- over time. The user will be able to select text or graphics

mode. If text mode is selected, the data can be routed either to the screen or to a user-selected DOS

file. If graphics is selected, the display will be presented on the screen. The user will then have

the option of printing it to an attached printer (see the "Select Print Driver" command, <P>, at the

top level menu).

The user will first select the particular Processor to be examined. The user will then
specify one of three types of resource utilization to be displayed, corresponding to the three types

of resource Transfer Functions:

- Memory Capacity
- Memory I/O bandwidth
- Bus I/O bandwidth

Then the Class and Name of the resource (memory or bus) must be selected. Finally, the

time interval must be selected. Details of this process are discussed with the commands on the next

lower-level menu.

Internally, PERM divides the total EPOCH interval into 500 distinct bins, and then

samples the resource utilization for every processor at each bin. The Total Utilization command

<DR> produces the sum of those values across all processors; this command shows the utilization
of the resource by the particular, selected processor. The textual display prints out the resource

utilization values, as a percent of total resource available, for each time bin. Selecting a sub-

interval of time effectively selects a contiguous subset of these bins. In the graphical displays,

2-124

these values are displayed on a 2-dimensional plot, value-vs-time, over the selected time interval.

The plot is automatically scaled to the screen size. In the textual display, the actual bin start and
end times, and values, are printed out -- either to the screen, or to a user-selected DOS file. The

contents of a textual display are as follows:

I1. A header that identifies
- the processor being examined (that is, its instantiated name
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory -- being

examined
- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to which the resource

belongs)
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author

2. For each time bin falling within the selected time interval
- the number of the interval (1 <= # <= 500)
- the start and end times of the interval
- the value of resource utilization by the processor in the interval, as a

percentage of total resource available

If the graphical display is chosen, the graph of value-vs-time is labeled with the following data:

- the processor being examined (that is, its instantiated name)
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory -- being

examined
- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to

which the resource belongs), called the resource Threshold; it
corresponds..to 100% on the vertical axis

- the Compute file from which the data was drawn
- the Processor Ensemble name

In addition, the axes are labeled with their appropriate units and values.

2-125

Print a Processor/Resource Utilization Profile (to a DOS File) (@@DPF)

Internally, PERM divides the total EPOCH interval into 500 distinct bins, and then

samples the resource utilization (for every processor) at each bin. This command shows the

utilization of the resource by any given processor; the Total Resource utilization command sums

the utilization of the resource across all processors. An ASCII version of the resource utilization

values, as a percent of total resource available, for each time bin, is written to a user-selected DOS

file. Selecting a sub-interval of time effectively selects a contiguous subset of these bins. The

contents of a textual file are as follows:

1. A header that identifies
- the instantiated name of the processor being examined
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory -- being

examined
- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to which the resource

belongs)
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author

2. For each time bin falling within the selected time interval
- the number of the interval (1 <= # <= 500)
- the start and end time of the interval
- the value of resource utilization in the interval, as a percentage of total

resource available

When the command is executed, the user will be prompted for the name of the file to

which the data is to be written. A full DOS path name, including drive and directory, can be used.

If omitted, PERM will use the default directory -- the directory from which PERM was executed.

If PERM cannot open the file, and error message is displayed, and PERM waits for further action

by the user. If the named file already exists, it will be over-written, and its contents lost.

The user must next supply the following information: (1) the Class of the processor to be

examined; (2) the instantiated name of the processor; (3) the type of resource to be examined

(memory capacity, memory I/O bandwidth, or bus bandwidth); (4) the Class of resource (that is,

Memory Class or Bus Class from the Processor Ensemble); (5) the instantiated name of the

2-126

! I

I

resource from that Class; and (6) the start and end times of the interval over which data is wanted.

The first five of these are selected from scrolling menus in the usual manner: <Home> and <End>

to move the cursor, and <Retum> to select.

The interval start and end times are entered as floating point numbers into a menu
provided for this purpose. The default start time is 0.; the default end time is the Epoch length (as

specified during System Load definition in the initialization phase of PERM). Both the new start

and end times must lie in this interval, and the new end time must be greater than the new start
time. Failure to adhere to these rules will generate an error message, and the user can either try

again or exit the command, using <ESC>.

Print a Processor/Resource Utilization Profile (to the Screen) (@@DPS)

Internally, PERM divides the total EPOCH interval into 500 distinct bins, and then

samples the resource utilization (for every processor) at each bin. This command shows the
utilization of the resource by any given processor; the Total Resource utilization command sums

the utilization of the resource across all processors. An ASCII version of the resource utilization
values, as a percent of total resource available, for each time bin, is written to the screen. As

usual, the data is scrolled to the screen a page at a time, with the <C> key available to stop data

output and return to the menu. Selecting a sub-interval of time effectively selects a contiguous

subset of time bins for display. The contents of a textual display are as follows:

1. A header that identifies
- the instantiated name of the processor being examined
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory - being
- the start and end times of the time interval
- the total Size of the resource (drawn from the Class to which the resource

belongs)
- the Compute file from which the data was drawn
- the Processor Ensemble name
- the Author

2. For each time bin falling within the selected time interval
- the number of the interval (I <= # <= 500)
- the start and end time of the interval
- the value of resource utilization in the interval, as a percentage of total

resource available

2-127

The user must supply the following information: (1) the Class of the processor to be
examined; (2) the instantiated name of the processor; (3) the type of resource to be examined
(memory capacity, memory I/O bandwidth, or bus bandwidth); (4) the Class of resource (that is,
Memory Class or Bus Class from the Processor Ensemble); (5) the instantiated name of the
resource from that Class; and (6) the start and end times of the interval over which data is wanted.
The first five of these are selected from Acrolling menus in the usual manner: <Home> and <End>

to move the cursor, and <Return> to select.

The interval start and end times are entered as floating point numbers into a menu
provided for this purpose. The default start time is 0.; the default end time is the Epoch length (as
specified during System Load definition in the initialization phase of PERM). Both the new start
and end times must lie in this interval, and the new end time must be greater than the new start
time. Failure to adhere to these rules will generate an error message, and the user can either try
again or exit the command, using <ESC>.

Graph a Processors/Resource Utilization Profile (@@DPG)

The purpose of this command is to present a graphical display of the usage by any
particular processor of any system resource -- bus or memory -- over time.

Internally, PERM divides the total EPOCH interval into 500 distinct bins, and then
samples the resource utilization (for every processor) at each bin. This shows the utilization of the
resource by any given processor; the Total Resource command produces the sum of those values
across processors. Selecting a sub-interval of time effectively selects a contiguous subset of these
bins. In the graphical displays, these values are presented in a 2-dimensional plot, value-vs-time,
over the selected time interval. The plot is automatically scaled to the screen size. The graph of
value-vs-time is labeled with the following data:

- the processor (that is, its instantiated name) being examined
- the resource type: memory capacity, memory I/O bandwidth, or bus

bandwidth
- the instantiated name of the particular resource -- bus or memory -- being

examined
- the start and end times of the time interval

2-128

- the total Size of the resource (drawn from the Class to which the resource
belongs), called the resource Threshold; it corresponds ..to 100% on the
vertical axis

- the Compute file from which the data was drawn
- the Processor Ensemble name

In addition, the axes are labeled with their appropriate units values.

The user must supply the following information: (1) the Class of the processor to be
examined; (2) the instantiated name of the processor; (3) the type of resource to be examined
(memory capacity, memory I/O bandwidth, or bus bandwidth); (4) the Class of resource (that is,
Memory Class or Bus Class from the Processor Ensemble); (5) the instantiated name of the
resource from that Class; and (6) the start and end times of the interval over which data is wanted.
The first five of these are selected from scrolling menus in the usual manner: <Home> and <End>

to move the c, rsor, and <Return> to select.

The interval start and end times are entered as floating point numbers into a menu
provided for this purpose. The default start time is 0.; the default end time is the Epoch length (as

specified during System Load definition in the initialization phase of PERM). Both the new start
and end times must lie in this interval, and the new end time must be greater than the new start
time. Failure to adhere to these rules will generate an error message, and the user can either try
again or exit the command, using <ESC>.

When the graphical display has been drawn on the screen, the user will have the option of
printing a hardcopy of it to an attached printer. PERM assumes the printer is mounted on port

LPTI, and the print driver must have been select from the top-level Print Driver command so as to
match the internal driver to the printer. The <P> key is used to cause the printing to occur.

2-129

I

3. PERM TEST CASE: AOA/AOSP TRACKING MODEL

3.1 ABSTRACT OF ANALYSIS PROBLEM

To exercise analysis capabilities, a tracking model example was implemented in PERM.

This test case was selected not only to demonstrate a realistic Strategic Defense Initiative (SDI)

application, but also to stress PERM with a complex system.

The target software for this Track Model design was the Airborne Optical Adjunct (AOA)
Mission Data Processor (MDP). The AOA MDP software is divided into several major functions:

Angular Rate Smoothing, Candidate Generation Process, Chip Selection, Deferred Object
Screening, Handover, Measurement Processing, Navigation Update, Object Screening, Object

Sorting, Prediction, Radiometric Discriminant Initialize, Radiometric Discriminant Update,
Reference Star Matching, Track Data Management, Trajectory Fitting, Track Initialization, and

Track Update.

The MDP functions are allocated to four major subsystems: Measurement Processing;
Scan-to-Scan Correlation; Tracking, Discrimination, and Designation; and Navigation,

Input/Output, and Control.

The Measurement Processing Subsystem receives Object Sighting Messages. It corrects

bias, compensates for aero-optic refractions, and corrects irradiance measurements on these

sightings. This subsystem also performs star screening by discriminating stars from other objects.
The Scan-to-Scan Correlation Subsystem sorts these object sightings into both azimuth and

elevation bins and separates the sightings that are part of established tracks from the ones that are
from uncorrelated tracks. The established track sightings are sent on to the Tracking,

Discrimination, and Designation Subsystem. The uncorrelated sightings are compared to previous

frames of sightings to attempt to form candidate ballistic trajectories. These candidate tracks are

also sent to Tracking, Discrimination, and Designation.

The Tracking, Discrimination, and Designation Subsystem uses navigation data,

candidate track messages, and object sighting data to initialize, validate, and update precision

tracks. This subsystem uses correlated object sightings to predict the position and velocity of the

tracks at both handover and impact point. Lethality is also estimated for each track.

3-1

The Navigation, Input/Output, and Control Subsystem performs atmospheric refraction

compensation, reference star matching, navigation update, module selection, scan control,

handover buffer, and external MDP operational interfaces.

For more detailed information about the AQA MDP flight software algorithms, reference

the Mission Data Processor Algorithm Design Document, D461-10282, Boeing Aerospace

Corporation, 30 January 1987, classified SECRET.

The AOA MDP functions depend heavily on the data passed between them. This intricate

data flow is portrayed in Figure 3-1. (This chart is from Teledyne Brown Engineering Technical

Letter "MDP Architecture Informal Class", KD87-AOA-HA-3-2-0l 14. N. E. Reed, 30 June

1987.)

FUNCTIONS am.o
ARS Agulare So"te
CS Cho Solocan
DES =enton

140 MaIoer
Wp Meestooffloi Processtng
WAV Nav~atent Update Aco
060 Object Swr~mg

POU Redornotic O,saeytutani UpdateIN
RS& Aetere.,c. Stat Met"w'9g

&I Sc%an ntrol e
TF ITegectory Fe.V o Og
T1 Track bImahlozdo
IU Track update

R W

DATA
CTM Candidate Track Message C AA
OUSM Detetted Mossed SgtvwVM 0
OPWF Deterred ProodWto d
0mUM Deferred Track Update MessageTA
ELCOR Elovatur Crecats MessagePC rj L
04TSM Mandover Trc Stot Message aINA fr,.aow Assrg,,,t Dama

#AS Missed Sqgtwrs Message
WHIF Navqtt*n Hiss"t Fdie

01F . 04- Irt akaneFe
OSOF O0 State Dota Pie
OSM OetSihg Me ao
OSA OS11- = SM IM ~ oOTW 0ha Ttadt je
PICTU Pae Cenddate Track Message
POTUPM Peal Deferred Track Update; sg1 C
PAN4 Prdae, go WSWa.MesgPWP Predicted Wind"' Pie
SIX 5Wa Cotrot Lkmk NMa
am~ S:a: Wksng message
88SSete s.,t of Scan Message ETAM Track Accpanc Message
PARM Track Accepl4tei Messalge

TORN TracDratped essage Llfie rTOMt Track aInomon Message
TIM Track Update Message as
UMd Un.rreoed SqW0Vt Mossage F

Figure 3-1 MDP Data Flow

3-2

The MDP flight software is distributed on nine processing nodes on the AOA hardware,

shown in Figure 3-2. (This diagram is based on Boeing Aerospace Corporation Technical Letter
"Flight Software Architecture", 2-2985-87JS-019, R. Schroder, 6 February 1987.) The first node

hosts the Object Sorting and Measurement Processing functions. Node 2 hosts Object Screening,

Angular Rate Smoothing, Track Data Management, and Predicted Window File Sort. Nodes 3-8

are responsible for Candidate Track Selection and Tracking, Discrimination, and Designation.

Node 9 is the Navigation, Input/Output, and Control Node responsible for Navigation Update,

Reference Star Matching, and Handover Communication.

I NO0DE 34

-- TR4ACK -

F TAM tton
NO DE I NO DE 2 TAR 11 NOD -

• m* J C T S C R N[* ,C O M M 1

.RATE s tf NA EROL
AZ RE",n 05 SM TMMT'RICVAI M

CORRECTf .dOI~ -- 4 OWl"mTION CORCO 04-to

iuRre C3- AO D fw uPOAe oigura€08". 011CM&MM'lON MA uTCH S

The-- tagthrwr o h Track Moe dsinas h AvncdObor Sga

• OJECT SORT - P1-11 UOATl[• A.NOVER
COMMU.NICATMO GVS

i .* ESIMMAT'O" L F--
V I A PREDICln" I

: 4 DoATAn

Figure 3-2 AOA MDP Software Configuration

The target hardware for the Track Model design was the Advanced Onboard Signal

Processor (AOSP). The AOSP can be viewed at four different levels: CPU, node, platfornr ad

system.

The AOSP CPU is a processor chip that is based on the 1750A standard design, a RISC

architecture using a 16-bit word, as the heart of the Array Computing Element (ACE). Clock

speed depends on the manufacturing implementation. Two contractors have developed alternate

3-3

versions. and performance has steadily been improved in the several years of developments. In
this report, the confirmed processing speed attained by the Raytheon version has been used.

The ACEs are combined into complexes designated as nodes. These include several
CPU/ACE set-, memory modules, memory control units (DMA), processor accelerators for
selected functions (e.g. vector arithmetic), and local busses. Figure 3-3 shows a somewhat
simplified schematic of an AOSP node, as designed for BSTS application. The DMAs, while
actually present in the BSTS hardware, have been omitted in this diagram as a simplification.
Further simplification occurs in Figure 3-4, where the separate memory units are coalesced into
one, assumed homogeneous. The accelerators have also been suppressed in this diagram, as have
interfaces to external busses. The latter will reappear in the next figure. These simplifications are
consistent with the intention to model the AOSP with PERM, which provides intermediate fidelity.

" FAULT TOLERANT DATA FROM SENSORS
. 1000 NOOES (MAX)
" RAD HARD

VECTOR VECTOR
PROCESSOR PROCESSOR OASP FFT OASP FFT

ACCELERATOR ACCELERATOR

GLOBAL BUSSES MEMORY MEMORY MEMORY MEMORY
(TO/FROM OTHER

NODES OR SYSTEM I/O)

[VC GVC 0VS;C
I 7SOA •*A ISOA

Figure 3-3 AOSP BSTS/ADOP Multi-process

3-4

MEMORY

JLOCAL BUSF I I I
CPU CPU CPU CPU

1750A 1750A I7SOA 1750A

" FOUR INDEPENDENT PROCESSORS PER NODE
• MEMORY ACCESS SCHEME - ARBITRATED CONTENTION
" BUS INTERFACES OMITTED

Figure 3-4 Simplified AOSP Node.

On each platform, the multi-processor nodes of Figures 3-3 or 3-4 are replicated and
interconnected by what is termed a planar array architecture. In such an architecture, each node is
directly bus-connected to four others in a pattern that is conveniently represented on a plane with
n2 nodes. The four busses at each node are identified respectively as horizontal, vertical,

ascending diagonal, and descending diagonal. In Figure 3-5, a planar array of 9 nodes (= 32) is

depicted with the 12 separate busses. Other examples of planar nodal AOSP arrays have been built
of sizes 42 and 52. The sample problem treated in this report requires only five nodes with two or

three CPUs per node. The details appear in the next section.

3-5

PACKET-PROTOCOL
INTERELEMENT BUSES

I <

9 NODES I
4 BUSSES PER NODE

Figure 3-5 AOSP Hardware Configuration Overview

In a Strategic Defense System application, there would be several AOSP-equipped

platforms, physically widely separated, e.g. on distinct satellites. They would be interconnected

by RF communications links (or possibly lasercomnm). Their various functions would be mutually

supporting for a wide variety of battle management applications, of which threat object tracking

and correlation is just one. The PERM model is well suited to the analysis of such a complex

situation, but in this initial investigation the study extended only to single platform level processing

involving several nodes and many processors.

To represent the AOSP hardware bandwidth and memory storage, parameters were input

into PERM. The effective bus bandwidth of the Track Model is 12 megabytes/second; the memory

bandwidth is 16 megabytes/second; and the storage capacity on each nodal memory is eight

megabytes.

The AOA software mapped onto the AOSP hardware proved to be an interesting and

stressing example to model in PERM. The following pages describe the design, implementation,

and results . this track model.

3-6

I

I

3.2 MODEL DESIGN

Several assumptions were made before implementing the Track Model in PERM. These

assumptions were made for various reasons, many times for simplicity. For example, only two of
the six track nodes were modeled in order to limit the test case to a reasonable analysis effort.

Also, AOA hardware specific functions were not modeled, such as Scan Control and Chip

Selection. Deferred Object Screening was not modeled since only a few objects are deferred and

the process is difficult to model. These functions that were not modeled are shaded in the diagram
shown in Figure 3-1. External input and output were also not modeled in order to narrow the

scope of the analysis.

Some assumptions were made to ensure modeling accuracy. For instance, the number of
objects in the system is assumed to be greater than six objects. This assumption is necessary

because some of the Lag Segments (segments inserted to more accurately .nodel pipelining)

process a constant number of objects.

Another assumption is that the steady state of the system is reached with a simulation time
greater than 100 seconds. At this time, a certain number of tracks will be in the system in an
"update mode." This assumption was needed to realistically model the tracking process. For
example, Object Screening decrements the Predicted Window File by the previous window's total
accepted tracks before the Predicted Window File Sort increments this same file with the new

tracks.

At least one modeling decision was made to ensure that the example model remained
unclassified. For example, the Mission Initialized Data Base is not modeled since its size and

distribution across the nodal memories is classified.

Another assumption was made because of limited resources. The allocation of the MDP
software to the AOSP hardware was assumed not to increase the resource contention delays that

exist with the MDP software on the AOA hardware. Although the AOA software to AOSP
hardware mapping is a reasonable scheme, it is piibably not optimal. Since PFRM is a feasibility

tool and does not attempt to optimize, the allocatKn scheme was not investigated in enough detail

to prove or disprove optimality.

3-7

Available data influenced another decision. Much of the timing data used in deriving the

runtime transfer equations was extracted from an available timing study (referenced in

Appendix B). Since this data included Direct Memory Access, scheduling, and bus access and

contention, these costs are also included in the runtime equations.

Another decision was to represent the entire tracking function as a single task. This

decision was made, not only for design simplification, but also to prepare for later extensions of

the model. For example, multi-task applications could then be easily constructed by modeling

multiple attack waves as replications of this single task.

The single track task was modeled as 13 threads divided into 46 application segments.

Fourteen join segments wer : also added to model the thread dependencies. The inter-dependencies

of the segments and threads are shown in Figure 3-6. Arrows in this directed graph show the

dependencies. Wherever a segment in this graph has an arrow pointing to it, it must wait to start

processing until its predecessor segment is finished.

P1 2 L, ,Ip9

segments In the model application. P 3P

Figure 3-6 Track Task Thread Dependencies

3-8

P1 P13 2

At the start time of a simulation, segments 38, 43, 44, 45, and 46 begin simultaneously.
These segments initialize each nodal memory and require no runtime. They utilize memory for the

software instruction sets and database steady state sizes. Once these segments finish, still at the

start time, segments 36, 3, 19, and 31 begin processing and pipelining begins. Lag Segments (1,
3, 11, 23, 36, and 42) are included where requirements dictate that a certain number of objects

must be processed before pipelining can continue.

The allocation of the application segments to the threads is described in Figure 3-7. Each
thread is resident on a single processor. Unique threads are Object Screening, Object Sorting,
Angular Rate Smoothing/Track Data Management, Measurement Processing, Navigation Update,
Handover, and Reference Star Matching. The remaining threads, residing on the tracking nodes,
are replicated. These replicated threads are Candidate Generation Process, Track Initialization, and

Track Update.

Object Sorting (OSO), Pi Track Initialization (TI), PS & P7
I Obiect Sorting Lag 14 & 26 Track Fitting
2 Object Sorting 42 Track Initialization Lag

15 & 27 Track Initialization
Object Screening (OSC), P2 16 & 28 Radiomemc Discaminant Initialization17 & 29 Designation
44 Initialization Node 2 18 & 30 Prediction
3 Object Screening Lag
4 Object Screening Track Update (TU), Pg & P9

Angular Rate Smoothing/Track 45 & 46 Initialization Nodes 4 & S
9 & 31 Track Update dData Management (ARS/TDM), P3 20 & 32 Radiomemc Discrsminn Update

35 Angular Rate Smoothing Lag 21 & 33 Designation
6 TDM Initial Initiator Loading 22 & 34 Prediction
5 Angular Rate Smoothing
7 TDM Build Candidate Track Message
I TDM Remaining Initiator Loading Navigation Update (NAV), PII
9 TDM Track Accept/Reject Message Handler

10 Predicted Window File Son 38 Initialization Node 339 Navigation Update

Candidate Generation Process
(CGP), P4 & P6 Handover (HO), P12
I I & 23 Candidate Generation Process Lag 40 Handover
12 & 24 Candidate Generation Process
13 & 25 CGP Track Accept Message Handler

Reference Star Matching (RSM), P13
Measurement Processing (MP), PI 41 Reference Star Matching

43 Initialization Node I
36 Measumtent Processing Lag
37 M asureent Piocesuing

Figure 3-7 Segment to Thread Descriptions

3-9

The 13 processors are allocated on five processing nodes, shown in Figure 3-8. The

Object Sorting Node hosts both the Measurement Processing Thread and the Object Sorting

Thread. The Object Screening Node hosts the Object Screening Thread and the Angular Rate

Smoothing/Track Data Management Thread. The third node, Navigation, Input/Output, and

Control, hosts the Navigation Update Thread, the Handover Thread, and the Reference Star

Matching Thread. Nodes 4 and 5, Tracking Nodes, host the replicated threads of Candidate

Generation Process, Track Initialization, and Track Update. Seven unique busses are required to

handle the data traffic.

B4

Ojbje Sorting Node (Il $je Screening Node (2) Navigation. 11O. & Control (3)

OSC ARS/TrM NAV HO RSM

P 57.P 8 r. 6,1 1

COP TI TU CGP TI TU

Tracdang Node (4) Tradung Node (5)

Figure 3-8 PERM Allocation of Software to Hardware

Local and shared memories, designated by MI-M5, reside on each processing node. The

primary Track Data Files are allocated to the five nodal memories by the mapping shown in Figure

3-9. The Measurement Processing Nodal Memory resides on Ml, the Object Sorting Node's

memory. The Object Irradiance File, the Predicted Window File, and the Failed Track List File all

reside on M2, the Object Screening Node. The Navigational History File is located on M3, the

Navigation, Input/Output, and Control Node's resident memory. The Tracking Nodes host

separate copies of the Object State Datr File and the Object track File.

3-10

Object Sortng Node (1) Object Sa'eerdn Node (2) "asog~on. W. & Control (3)

M1M2 M3
Measurement Processing Object irradlanoe File (OF)
Nodal Memory (MPNMEM) PrNdictad Window File (PWF)(NHF

Failed Track Ust File (FTF)

Tracking Node (4) Tracking Node (5)

M4 M5

Object State Data File (OSDF) Object State Data File (OSOF)

Object Track File (OTF) Object Track File (OTF)

Figure 3-9 Track Data Set Allocation

Runtime, Memory Access, Memory Usage, and Bus Access equations were derived for
each of the 46 application segments. These transfer equations are described in detail in Appendix
B. Each equation is first given as a function of several defined parameters and then simplified to a
function of a single parameter N, the number of objects to track. Runtime is expressed as a single
equation; however, Memory Usage, Memory Access, and Bus Access are expressed as sets of
equations. Memory Usage and Memory Access equations are divided into five different equations
representing the five separate local nodal memories, MI-M5. Similarly, Bus Access equations are
divided into five sets representing the seven busses, B I-B7.

3.3 IMPLEMENTATION OF MODEL DESIGN INTO PERM

In implementing the Track Model design into PERM, classb for the processors,
memories, and busses were first defined and later instantiated. These class names and
instantiations are listed in Figure 3-10. By defining only four classes of processors, all 13
processors were instantiated. Four classes of memories were defined, with five instantiations; and
five bus classes were created with seven instantiations. Creating classes first and then using these
definitions for several instantiations reduced redundant data entry. These classes and instantiations
defined the AOSP hardware, at least the portion of it needed for this application.

3-11

CLASSES INSTANTIATIONS

Processor
SORTERS P1 & P10
SCREENERS P2 & P3
NAVIGATIONAL CONTROLLERS P11, P12, & P13
TRACKERS P4, PS, P6, P7, PS, & P9

Memory
SORT MEMORY M1
SCREEN MEMORY M2
NIOC MEMORY M3
TRACK MEMORY M4 & MS

Bus
SCREEN WITH TRACK 61 & 62
SORT TO SCREEN 83
SORT WITH NIOC B4
TRACK WITH NIOC 65 & B6
SCREEN WITH NIOC 87

Figure 3-10 PERM Track Model Classes

To represent the AOA tracking software in PERM, segment class descriptions were then

built for all the Track Model segments by using the coefficients defined for the transfer equations.

(The transfer equations are defined in detail, along with the parameters used in their derivation, in
Appendix B.) A partial Track Model segment class description is shown in Figure 3-11. This
segment class, OBJECT SORTING, runs on type SORTERS processor class. Its type is an
application segment, and it is instantiated only once. The runtime transfer function was entered

into the database by simply editing the coefficients. Since the equation was quadratically
dependent upon N, three fields were provided. All other coefficients defaulted to zero.

Segment Class Name: OBJECT SORTING
Target Processor Class: SORTERS
Number of Instantiations: 1
Segment Class Type: Application Gode

Transfer Functions List:
N = Data Set Size:
R = Data Set Size Reduction Factor:
M = R' N:
F(N) = G(M) = 01 + (02 * M) + (03 ' M **2) + (1 + (L2 * M) LOG2(M))

Run Time Transfer Function Coefficients:

R = 1.000000t+00 01 = 1.900000E-05 Li = O.OOOOOOE+00
02 = 9.900000E-05 L2 = O.OOOOOOE+00
03 = 1.800000E-07

Figure 3-11 Track Model Segment Class Description Part 1

3-12

The OBJECT SORTING segment class description is continued in Figure 3-12. The

SORTER class of processor has access only to one memory, from the SORT MEMORY class.

This instantiation was named V_SortMemory. Therefore, only one transfer function was defined

for memory space requirements and only one transfer function was defined for memory I/O
requirements. Since this processor type had access to two busses, two separate transfer equations

were defined. This particular segment did not interact with the Navigation, Input/Output, and

Control Node, so the coefficients for the V_NIOCJ/O bus were left as zeros.

Memory Space Requirements Transfer Function Coefficients:

Memory Variable Name: V Sort Memory
Memory Variable Class Restriction: SORT MEMORY
R = 1.00O000E+00 01 = 1.900000E-05 LI = O.000000E+00

02 = 4.370000E+01 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory 1/O Requirements Transfer Function Coefficients:

Memory Variable Name: V Sort Memory
Memory Variable Class Restricti'on: SORT MEMORY
R = 1.OOOOOOE+00 01 = O.OOOOOOE+00 L1 = O.OOOOOOE+00

02 = 4.370000E+01 12 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coefficients:

Bus Variable Name: V Screen I/O
Bus Variable Class Restriction- SORT TO SCREEN
R = 1.OOOOOOE+00 01 = 1.760000E+02 L1 O.OOOOOOE+00

02 = 4.370000E+01 12 = O.OOOOOE+00
03 = O.OOOOOOE+00

Bus Variable Name: V NIOC I/O
Bus Variable Class Restriction: SORT WITH NIOC
R = 1.000000E+00 01 = 0.000000E+00 L1 = O.OOOOOOE+00

02 = 0.000000E+00 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Figure 3-12 Track Model Segment Class Description Part 2

Next, the thirteen threads were built by instantiating segment classes and appending them

together. A description of an example thread is shown in Figure 3-13. This replicated Candidate

Generation Process thread, "THD_4: CGPI", runs on processor P4 of type TRACKERS. This

thread is made up of four segments. Its application segments are Candidate Generation Process

Lag, Candidate Generation Process, and Candidate Generation Process Track Accept Message

Handler. The join segment is included at the top of the thread to model the dependency of this

3-13

thread on Segment 6 of the thread, 'THD_3: ARS/TDM". This thread was created in the Task

Class database by copying the other replicated Candidate Generation Process thread and editing a

few fields to change the segment names and the join dependency.

Thread Name: THD 4: CGP1
Target Processor: P4
Target Processor Class: TRACKERS

""Segment List:

Segment Name: Segment 11 Join
Segment Class: CGP LAG JOIN
Sagment Type: Join
Predecessor Segment: Segment 6
Predecessor Thread: THD_3: ARS/TDM

Segment Name: Segment 11
Segment Class: CANDIDATE GENERATION PROCESS LAG
Segment Type: Application Code

Segment Name: Segment 12
Segment Class: CANDIDATE GENERATION PROCESS
Segment Type: Application Code

Segment Name: Segment 13
Segment Class: CGP TRACK ACCEPT MESSAGE HANDLER
Segment Type: Application Code

Figure 3-13 Track Model Thread Description

A complete description of the information in the databases for the Track Model is found

in Appendix C. This is a computer-generated printout of the load definition database.

3-14

I

3.4 \ERIFICATION APPROACH

The primary purpose for implementing the Track Model design into PERM was to verify
the PERM software. This verification process involved seven steps: (1) preparing the test case,
(2) making hand calculations, (3) performing PERM System Definition, (4) comparing input
values with the database, (5) performing PERM Compute, (6) performing PERM Display, and (7)
comparing hand-calculations with the Display outputs. Figure 3-14 depicts this process.

..

! a
To~udew IPRM CIPE a Fbaa

Demo

Calulin Evt Uis .a

Figure 3-14 PERM Verification Approach

First, the test case was prepared by defining the model as described in section 3.2 and by
assigning variable and class names for use in PERM as detailed in section 3.3.

Next, hand calculations were made by assigning a constant value to the parameter N and
solving for all the Runtime, Memory Access, Memory Usage, and Bus Access transfer equations.
In the hand calculations, beginning runtime for each segment was determined by summing the
runtime values of all its predecessor segments. Runtime for each thread was calculated by
subtracting the beginning time of the first segment from the end time of the last segment. Resource
utilization was calculated by summing all the segment utilization values for each resource within a

3-15

specific time interval. Since hand calculations for resource use were lengthy and tedious, complete

event lists were not generated for the entire model. Instead, time-ordered event tables were
calculated for a representative type of each resource. The resources evaluated were bus B I,

memory M2, and processor P3.

The PERM system was defined by executing the IPERM program and manually entering
the Track Model data. Processor Ensemble Definition (PE); Software Component, or Task Class
Definition (TC); and System Load Definition (LD) databases were created.

The PE, TC, and LD files were then converted to ASCII files using the PERM PRINT
option and printed using the DOS Print Command. These hardcopies were compared to the input
data to check for input errors and to test the validity of the database build generation. Next, the
PERM Compute feature was exercised by running the CPERM program. The input file for this
Compute operation was the LD file. Event and Index files were generated as output.

The output files from CPERM were used as inputs to the Display program, DPERM.
Data-reduced textual and graphical displays were generated for analysis. These displays included

an Event List, a textual listing of events within a user-specified interval; a Detailed Processor
Profile, a textual listing of only those events involving a user-specified processor; a Resource Use
Profile, a textual and graphical summary of the percent uilization of a resource over a particular
interval; and a Processor Resource Profile, a textual and graphical summary of a Resource Use

Profile for a specific processor.

The major verification effort involved comparing the hand calculated data with the display
outputs. Since none of the PERM-generated outputs were identical in form to the hand calculated
lists, a combination of Display outputs were analyzed. Segments that used a target resource were

extracted from the Event List and compared for validity against the hand calculations. Also, the
Resource Use Profile was used to check the percent utilization of this target resource over the

specified time interval.

3-16

3.5 PERM VERIFICATION RESULTS

The first step in analyzing the test case results was verifying the PERM software by
comparing the expected values from hand calculations with the PERM output files from

representative resources. The resources evaluated were bus B I, memory M2, and processor P3.
Hand calculations were made for the segments running on processor P3 by assigning a constant
value of 50 to the parameter N and solving for all the Runtime, Memory Access, Memory Usage,

and Bus Access transfer equations. Beginning runtime for each segment was determined by
summing the runtime values of all its predecessor segments. Maximum resource utilization
percentages were calculated by dividing the values from the resource equations by the maximum

resource utilization values allowed during the segments' duration.

As shown in Figure 3-15, the hand-calculated values were very close to the values in the
PERM event listing for processor P3. (The complete PERM-generated event list for processor P3
is in Appendix D.) The slight differences in the two tables of values can be attributed to
differences in the arithmetic precision used in the calculations and in the order of the calculation

operations. The hand-calculation table revealed a little more activity on P3 than the Event Listing

showed. The major area of difference was in the memory capacity usage. The PERM event listing
showed no usage on each of the nodal memories accessible to P3; however, the hand calculations
showed that although the usage was insignificant, there was some activity. The difference in these

utilizations was attributed to an improper order of operations in the PERM prototype and has since

been corrected.

3.6 TRACK MODEL TEST CASE RESULTS

Three major areas of resource usage were evaluated in the Track Model test case analysis:
Memory Capacity, Memory Input/Output Bandwidth, and Bus Bandwidth. The most significant

results from each of these areas is discussed in the following paragraphs.

With only 50 objects in the system, the percentage each nodal memory used was

approximately zero over the duration of the simulation run. To analyze the nodal memory
fluctuation over time, the memory capacity was evaluated for a more realistic threat scenario of

1,000 objects in the system.

3-17

PERM Event Listing for P3
gment Start Duration Max % Ux% usage Max % Usage

Bus Bandwidth Memory Bandwidth Memory Capadcity
B 82 2 B 7 M2 M4 M5 2 M4 M5

35 .00578797 .0029000 0 0 0 0 4 4 4 0 0 0
6 .00607797 .00060000 0 0 0 0 0 0 0 0 0 0
5 .00607797 .00546500 0 0 0 0 34 4 4 0 0 0
7 .25480000 .00171500 6 6 0 0 17 0 0 0 0 0
8 .25651500 .00048000 0 0 0 0 0 0 0 0 0 0
9 .25699500 .00440500 0 0 0 0 48 0 0 0 0 0

10 .26140000.00045000 0 0 0 0 104 0 0 0 0 0

Hand Calculation of Events for P3
Segment Start Duration Max % Usage Max % Usage Max % Usage

Bus Bandwidth Memory Bandwidth Memory Capacity
B1 82 B3 67 M2 M4 MS M2 M4 MS

35 .005788 .000290 0.99 0.99 0 0 4.14 4.14 4.14 0.0024).0024 1 0024
6 .006078 .000600 0.06 0.08 0 0 0.00 0.00 0.00 0.0024 .0000 .0000
5 .006078 .005465 1.00 1.00 0 0 34.03 4.17 4.17 0.0460 .0480).0480
7 .254801 .001715 8.12 8.12 0 0 16.94 0.00 0.00 3.4000 .00).0000
* .256516 .000480 0.06 0.08 0 0 0.00 0.00 0.00 3.4000).0000).0000
9 .256996 .004405 4.95 4.95 0 0 48.85 0.00 0.00 3.3700 .0000)00

10 .261401 .000450 0.00 0.00 0 0 104.64 0.00 0.00 3.3700).0000 p.0000

N 8 50 objects In the system Memory Bandwidth a 16000000 bytes/tsec. per nodal rrmory
BusBandwddtthm 12000000 byle/c. per bus MemonyCapacty a 8000000bylespernodalmerory

Figure 3-15 PERM Verification Analysis of Event Listing for P3

The Object Sorting and Object Screening Nodal Memory graphs in Figure 3-16 show that

even at 1,000 objects in the system, the utilization was extremely low. The Object Sorting Nodal

Memory had some activity near the start of the run, when object sightings were loaded into its

buffer and the Measurement Processing Nodal Memory File was initialized for steady state. The

Object Screening Nodal Memory maximum use was during the time that the Object Screening

Segment 4 was running.

N = 1000 Objects In the System

OBJECT SORTING NODAL MEMORY (M1) OBJECT SCREENING NODAL MEMORY (M2)

Pr ,-o.. ar: ro-ory: KI Pro m sor: m .,o+v IQ

1..0

1 4.0

040

2.0

0 20

G .0 10 20.0 1i.0 20.0 23.0 30 0 .0 S.0 o. 0 O. O Id . 30
Sio trw 0 to a l.40 r,.. 0rs. * to IS.606?I

Fir MCIIl I-6 Tc M eOeY morCIap IaciItyrAaidy i Pat 1
Figure 3-16 Track Model Memory Capacity Analysis Part 1

3-18

Since the current PERM version evaluates memory capacity only during each segment's

run instead of as a cumulative total, modeling the database fluctuations was somewhat awkward.
To model databases, the analyst must know the order that the segments execute and then derive
each memory usage equation as a function of what is already in memory. Also, "filler segments"
have to be included between timing gaps in segment runs to keep the memory size from dropping
when the database was not being decremented. For example, a filler segment was needed for the
timing gap between 23 and 24 seconds in the Tracking Nodal Memory chart shown in
Figure 3-17. Fidelity of database modeling is also lost when the analyst must make assumptions
on how to model parallel segments accessing the same memory. A needed enhancement to PERM
is to include an option to model memory capacity by using delta values for each segment that
would change the total memory used on a node. This would also allow the analyst to set up

segments that permanently allocated memory.

N a 1000 Objects In the System

NIOC NODAL MEMORY (M3) TRACKING NODAL MEMORY (M4 & MS)

tpac e~ sUf l A3.E:O File:rack £E tr.:vt .df ..,le: AMP trac io g

2.50 14.0

2 00 12.0

10.0

* 1.50

I S .01

*, 1.00 .

4.0

0.50

2.0

0.0 ,................ ,..... .i........ F . ,0 .00 .0 10.0 3.0 2. 2. 00-
0.0 10.0 5.0 t0.0 s.0 201i f , 0 t* t l.o ? Ii.e f1. 7 0 to 1t.6067Y 'IIV I I rlvujuld : my W I (llt hrnmidml: nn

Figure 3-17 Track Model Memory Capacity Analysis Part 2

The Navigation, Input/Output, and Control (NIOC) Nodal Memory, shown in Figure
3-17, also had extremely low utilization, even for 1,000 objects. Since the nodal memory usage is
constant (based on the Navigational History File steady state size, the buffer size, and the

3-19

instruction set size), this maximum percent utilization value should have been the same for 50

objects in the system. This difference is probably due to round-off errors in PERM calculations
when using very small values for transfer equations. Also, the percent utilization of the NIOC
Nodal Memory should be constant over the entire run, instead of dropping off to zero at the end of
the last segment using M3. Again, a "filler segment" should have been included to model the

constant memory over the duration of the run.

The Tracking Nodal Memory graphs, also shown in Figure 3-17, showed the most

activity of the simulation run. Since they are replicated, both Tracking Nodal Memories would be

expected to have similar resource utilizations; in this Track Model they were modeled to have the
exact same utilizations.

Using PERM's Processor-Resource Utilization Display capabilities, the data on a

Tracking Nodal Memory, M4, was reduced to specific processor utilization. This allowed an in-

depth analysis of the Tracking Nodal Memory usage at 1,000 objects in the system. The
processors using M4 were P3, P5, and P8. Figure 3-18 shows Processor P3's graph of its

utilization of M4's capacity.The spike in this graph was caused by Angular Rate Smoothing
incrementing the Object State Data File. The Track Initialization Thread, located on P5, is

responsible for incrementing the Object Track File; therefore, it was the primary contributor to the
usage of M4 toward the end of the simulation run. The Track Update Thread, residing on
processor P8, was the heaviest user of the Tracking Nodal Memory M4, as shown in Figure
3-19. When the Track Update Segment 19 began, M3's memory was decremented from its
previous state in order to simulate the dropped tracks from the Object Track File located on M3.
However, as new tracks were received, the database size increased to its previous level for the

duration of the run.

Another test case used in analyzing the Tracking Nodal Memory utilization with 50
objects in the system was reducing the Memory Capacity threshold from eight megabytes to only

500,000 bytes. As seen in the partial textual listing of the Resource Use Profile shown in Figure
3-20, this limit was exceeded by 60% at the start of the run. The maximum percent usage at

500,000 bytes for M5 was 160%. In other words, this Track Model nodal memory requires at
least 800,000 bytes of storage capacity.

3-20

N = 1000 Objects-In the System

Processor P3 Processor P5

' .t File: U000.Ghf ,siMle: WIP 1lW%1I -EWit File: tinn ,ulf &006-0 in,
ProCmaor: P) Ke.-: 94 Pvumc w: P fit.": 4

14.0 " "

1.0

1.01
6 6
K I

l I0.60 £.01,0,
I I X 6.0,

0.40
~4.0

I '"
O.O :, ; I "I 'I.......I''' ... !0.0 ,........,...."......... I.... ... tY...... "

0.0 5.0 10 .0 1.0 0 30.0 0 . . 2.G 25.
ai p frw 0 IT to 11.6067

Increments obet SWe Data ie Inmw s Object Track File

Figure 3-18 Tracking Nodal Memory Capacity Part I

N = 1000 Objects In the System

Processor P8

(v.ut File: tJ .w qf, eCm.. : AMP Ittlat ln

14.

2r

4. 01

2.1

1"

II ~I" fro I to lO1

WCiI'tiL ttwl y l iold I OlO-

Lo Inskoion so £ steady state data sizes
r Goject Trac File & Objec StMe DaMa Fide
cm~ms Obje Track File

Figure 3.19 Tracking Nodal Memory Capacity Part 2

3-21

33333 RESOURCE USE LISTING its*3
cs333s3333$s333s3333333333$3*333$$333

Resource Use profile of MEMORY CAPACITY for M5

Interval: 0 to 2

Memory Size - 500000

Event Information from file # MSO0K.ehf
Processor Ensemble : AOSP Tracking

Author: TBE

MAXIMUM USE OF RESOURCE IN TIME INTERVALS

interval start time end time %used

0 0 0.0124045 1601
1 .0.0124045 0.0248089 160

2 0.0248089 0.0372134 160!

3 0.0372134 0.0496179 160

4 0.0496179 0.0620223 160

5 0.0620223 0.0744268

Figure 3-20 Resource Use Profile for M5 with 50 Objects in the System

The next resource evaluated was the Bus Bandwidth. Although there are many messages

passed between the AOA software functions, the extremely fast bus bandwidth on the AOSP

hardware architecture, 12 megabytes per second, almost made the data traffic seem nonexistent.

The only busses with significant utilization for the 1,000 object case were busses B 1, B2, and B3.

The graphs of the maximum percentage of bus bandwidth use for these busses are shown in Figure

3-21. Bus traffic for the data links between the Object Screening Node and the Tracking Nodes

(B 1 & B2) consisted of Uncorrelated Sighting Messages, Missed Sighting Messages, Track

Update Messages, and Predicted Window File Data. Traffic from the Sorting Node to Screening

Node was Object Sighting Reports. The percentage of bus bandwidth use for all the other busses

(B4, B5, B6, & B7) was approximately zero over the entire simulation run.

3 22

N a 100O Objects In the System

SCREEN WITH TRACK (B1 & 82) SORT TO SCREEN (63)

Pruv ,, , IkaS: B2 ,s,.., .. J

~ 0,0I

I ,,

0.2
4.01

toT 0.00~,~rrivY i
0 i5 O.0 J.G 1.$ 2.00 0.00 0.0 L OG J .5&i .00

SA r ScLtI tt''iod 2OiJ~0 * 1________f~ri0'$' . ',J .to____

Uncorretated Sighting Messages Track Update Messages Object Sighting Reports
Missed Sighting Messages Predcled Window File Data

Figure 3-21 Track Model Bus Bandwidth Analysis

The Track Model Nodal Memory Bandwidth Analysis proved to be the most interesting
of the resource analyses, since the percent of the memory bandwidth for each nodal memory was
significant. Shown in Figure 3-22, the Object Sorting Nodal Memory's bandwidth usage reached
almost 20% for 50 objects, while the Object Screening Nodal Memory's maximum memory
bandwidth was exceeded for the same number of objects. Shown in Figure 3-23, the Navigation,
Input/Output, and Control Nodal Memory only reached 10% of its maximum threshold with 50
ob; .cts, while the Tracking Nodal Memories reached almost 20% of their thresholds. The NIOC
nodal accesses were primarily for the Navigational History File. The Tracking Nodal Memory
accesses were needed for the management of both the Object State Data File and the Object Track

File.

3-23

N z 50 Objects In the System

OBJECT SORTING NODAL MEMORY (MI) OBJECT SCREENING NODAL MEMORY (M2)

(vimi rile: lrocl .Vf sa le: AMP lracktni Event File: Ir eal.if L-deble: ASP Irfcir n-
Processor: rkorv: R Processor: Vm~ rW: IM

tt

3~ 00

~0. 0 o..

nf. 1v 0.0 0.10 0.Z0 0.200 Ui 00 0. I 0.10 o .o 0 0.200 0.50 0. 0o 0
i.e fro. 0 tn 11.2 li.,e fro, 0 to 0-1

-I D Y BDI0N IThirej.Aold : I600000 . W WI fNVODT r lh,e 14:Ii J UUOOO

* Note that the scales are different tor each graph

Figure 3-22 Track Model Nodal Memory Bandwidth Analysis Part I

N a 50 Objects In the System

NIOC NODAL MEMORY (M3) TRACKING NODAL MEMORY (M4 & MS)
(lent rile: Irs.2.e'ff E, lwale: € P f ureq.t File: trad.2.ef Ens lle: AMP fromirnI'° ~t s ,, uProcessor: fkmr,: R4

22..

20.0t.c -o~

4. :1 1

4.10-'4 tn* . I

4. J 0.0"" "' ' 1 " '" "" " 1 '" "
""

I. ..
2.0~ 5.0

.5 0... 0.1 0 0.40 0 1.0 1.20 1.40

"y" stif l hfro l0 to 1 21.0 from 0 to 1.6IqIeIY OulItw Threshold i] r e fn16010 0o I 0

Nte that 11he Scales we diflere st O each graph

Figure 3-23 Track Model Nodal Memory Bandwidth Analysis Part 2

3-24

As shown in Figure 3-24, with only 50 objects in the system, the Object Screening Nodal
Memory's bandwidth threshold of 16 megabytes/second was exceeded. However, with 1,000
objects in the system, the maximum percent usage was under 25%. To gain further insight into the

possible cause of the Object Screening Nodal Memory bandwidth threshold being exceeded, the
two processors that had access to this memory were evaluated. As shown in the graph on the left
of Figure 3-25, the segments running on P2 did not exceed the threshold. The diagram on the
right shows that a segment running on P3 exceeded this threshold. Comparing the specific time of

exceedance with the event fist showed that Predicted Window File Sort Segment 10 was the
segment running when the limit was passed. Since the runtime for this segment was extremely
small, 0.00045 seconds with 50 objects, the segment did not have enough time to access needed
data before the runtime was completed. In the worst case, this would mean that the segment's
runtime is only off by a few thousandths of a second, causing no major delays. With more objects

in the system, as seen in Figure 3-24, the memory bandwidth threshold would not be exceeded.

N z 50 Objects in the System N a 1000 Objects In the System
Eent File: fro.4Z i Es".'ble: AMP Iracinq Evnt File: t10.W~,f En,,*lIe: NrP frackkn

Prucsor: tUurO.': I Pr ove,,: faIO

ga 0.0

200

I
$.0

0.0 "Ill

I lo.o0

......r v T -r r r r r r 7
.U-ow 0.0(50 721 .I 0 0Z . 0.23 0 a 0.I0 1.30 1.I0 2.1 2 , .60 3.1

0".,f 0 to d0.;1QM f6QR O.Z710 I toI
* Noeta h ae edifrrtfrec rp

I__3-25
Ojrv m

Processor P2 Processor P3
CSr.l., - - - -_________________________________

lFrlr, ,t F2 RIrV; 012f P ,l..1.: 3SP IraWOin
30roxy nr 90 V, r : 92 i g IN

0

4. 0- r 0-a

2.U 20 1

0.000 a.05 0.10 0.150 0.200 0.Z0 0.30. 0.050 0.10 0.150 0.200 0.250 0.300

lMe, fro. i to 0. "1f fM 0 t 0.3}'WIy Sp !O1N Twh..,l I)'~Yq)) _ 9l Y IIOITM 1h,~idce I6O000

Increments. Decrements, & Reads
Decrements Predicted Window File (oje Inradiance File

Increments Failed Track List File
Increments Predicted Window File

Note that the scales are different for each graph

Figure 3-25 Object Screening Nodal Memory Bandwidth Analysis Part 2

3.7 TRACK MODEL ANALYSIS CONCLUSIONS AND
REC(IMMENDATIONS

Upon evaluating the test case results, the resource analyses of memory capacity and bus

bandwidth showed no constraint problems when the AOA software was mapped onto the AOSP

hardware with 1,000 objects in the system. The memory bandwidth constraint was only exceeded

once at 50 objects, and its effect on the system would be negligible. Therefore, the AOA software

can be feasibly mapped onto the AOSP hardware architecture. In fact, the AOA software would

seem to map easily onto an AOSP hardware architecture with little timing problems.

Since the AOA software did not stress the limits of the AOSP architecture, an even more

sophisticated software tracking system, like a Space-Based Surveillance Tracking System, could

even be a possible candidate for this architecture. This would be an interesting follow-on analysis

study.

I
3-26

I

3.8 PERM ANALYSIS CONCLUSIONS AND RECOMMENDATIONS

PERM is relatively user-friendly. Data entry, though som,vhat tedious, is self-

explanatory with the help of pop-up menus and scroll options. However, some input features

could be "fine-tuned" for more efficient use.

PERM provides relatively "quick" response. Computational runs are relatively fast, and

graphs can be produced in seconds by reducing data with the selected options. Organization can

also speed data entry, thus increasing tum-around rate. System design charts, like those shown in

Figures 3-6 and 3-8, were found to be very useful in helping to input data into PERM.

Like all simulation tools, PERM has limitations. One constraint, its memory, could be

relaxed by employing more efficient software methods or by porting the software to a workstation.

PERM could be made much more flexible with the addition of a few options. For

instance, some options to increase statistical accuracy could be included in PERM. An easy feature

to implement would be to keep track of the percent of time that a particular processor is utilized

over the entire run duration. These runtimes for the segments are already in the PERM databases,

so the additions to the software would be minimal, yet the analyst would be provided some needed

statistics for systems analysis studies. Also, adding an option to execute Monte-Carlo runs would

automate the tedious procedure of regenerating random numbers and producing multiple runs for

statistical accuracy.

Input specifications could also be made more independent. For example, by including as

an option the ability to use the number of instructions executed per segment in the runtime

equations, instead of time, the model software would be more independent of the hardware inputs.

Also, by allowing the input variable to be changed from one segment to another may complicate the

final analysis, but would free the user from dependance on a single variable for all his equations.

Allowing multiple input variables would even further simplify the derivation of these equations.

PERM's fidelity could be increased by modifying the software to implement certain

features. One of these features is resource utilization calculations. The current method PERM uses

to calculate resource utilization is based on runtimes of segments. This may not always be

representative of every system. For example, the analyst may need to simulate a segment passing

3-27

data to another function, and the time for this data transfer is at the end of the segment run.

However, the bandwidth usage is calculated in PERM by dividing the bytes accessed by the

maximum number of bytes allowed during the segment's entire runtime. Therefore, the data traffic

distribution is not realistically modeled. Cne way PERM could more accurately model the resource

utilization distribution would be to allow the analyst to input transfer equations for each start time

of the resource utilization (based on a delta of the runtime) and duration times for each resource

utilization.

A suggested enhancement described in detail in section 3.6 of this report is to change the

way PERM models memory usage. This could be accomplished by using delta values for each

segment's memory usage transfer equations that would change the total memory used on a node.

In this way, databases would be more realistically modeled.

A simple modification to increase fidelity would be to increase the arithmetic precision of

all the PERM calculations. By having more precise results, the analyst would be able to better

monitor resource activity.

PERM is meant to be used as a feasibility tool. When performing detailed analysis,

PERM should be used with, not instead of, a higher fidelity simulation.

3-28

APPENDIX A

LISTING OF PERM TEST CASE

APPENDIX A

A.0 INTRODUCTION

This Appendix provides a complete listing of the PERM Test Case constructed to
support testing and demonstration of the system. This Test Case is referred to
repeatedly throughout Section 1 of the Final Report. The material is a verbatim
reproduction of the listings produced the the PERM Print and Log commands in
IPERM.

The first section presents the Processor Ensemble definition. The second section
presents the three Task Classes constructed for the example. The third presents the
full validate System Load.

A.1 Processor Ensemble Definition

Processor Ensemble Name: TEST CASE

Author: SPARTA Creation Date: 07/24/89

Validated = TRUE

Validation Date: 07/26/89 Validation Time: 14:26:47.52

*Processor Class List:

"Processor Class Name: DMA

***Accessible Processors Variables List:

Variable Name: Class Restriction:

v-local-cpu CPU

v-other-dma DMA

***Accessible Memories Variables List:

Variable Name: Class Restriction:

v-local-mem LOCAL MEMORY
v.global-mem GLOBAL MEMORY

A-1

*"Accessible Busses Variables List:

Variable Name: Class Restriction

v io bus I/O BUS

"*Processor Class Instantiation List

*"*Processor Name: dma_2

Processor Class: DMA

*""Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

v_local-cpu => cpu_2

v_otherdma => dmaI

*""Accessible Memories Variables Assignment List:

Variable Name: => Assigned Value:

v_local mere => mem_2

v-globalmem => globjmem

*""Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:

v io bus => io_bus

***Processor Name: dmal

Processor Class: DMA

*""Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

v-local-cpu => cpu~j

v-otherdma => dma_2

****Accessible Memories Variables Assignment List:

A-2

Variable Name: => Assigned Value:

vjlocal-mem => mem_1

v-global-mem => globmem

*'Accessible Busses Variables Assignment List-

Variable Name: => Assigned Value:

v_io-bus => io-bus

"Processor Class Name: CPU

*"Accessible Processors Variables List:
Variable Name: Class Restriction:

v_local-dma DMA

*"Accessible Memories Variables List:

Variable Name: Class Restriction:

v_local-mem LOCAL MEMORY

'Accessible Busses Variables List:
Variable Name: Class Restriction

List Empty-

*"Processor Class Instantiation List:

""Processor Name: cpu_2

Processor Class: CPU

*""Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

v-local-dma => dma_,2

*"Accessible Memories Variables Assignment List:
Variable Name: => Assigned Value:

A-3

v-local-mem => mem_2

*""Accessible Busses Variables Assignment List-

Variable Name: => Assigned Value:

- List Empty -

"'Processor Name: cpu_1

Processor Class: CPU

*""Accessible Processors Variables Assignment List-

Variable Name: => Assigned Value:

v_localdma => dma_l

"'"**Accessible Memories Variables Assignment List-

Variable Name: => Assigned Value:

v_localmem => memI

*""Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:
- List Empty -

*Memory Class List:

"Memory Class Name: GLOBAL MEMORY

Size: 20000000 Bytes

I/O Band Width: 10000000 Bytes/Second

"*"Client Processors Variables List:

Variable Name: Class Restriction:

v-first-dma DMA

v.second-dma DMA

***Memory Class Instantiation List:

A-4

****Memory Name: glob-mem

Memory Class: GLOBAL MEMORY

*""Client Processors Variables Assignment List:
Variable Name: -> Assigned Value:

vjfirstdma => dmajl

v-second-dma => dma_2

"Memory Class Name: LOCAL MEMORY

Size: 4000000 Bytes

I/O Band Width: 30000000 Bytes/Second

***Client Processors Variables List:

Variable Name: Class Restriction:

vjlocal-cpu CPU

v_local-dma DMA

*"Memory Class Instantiation List:

****Memory Name: mem_2

Memory Class: LOCAL MEMORY

*""Client Processors Variables Assignment List:

Variable Name: => Assigned Value:

v_local-cpu => cpu_2

v_local-dma => dma_2

****Memory Name: mem_

Memory Class: LOCAL MEMORY

*""Client Processors Variables Assignment List:
Variable Name: => Assigned Value.

vJocal_cpu => cpujl

A-5

v_local_dma => dmal

*Bus Class List:

"Bus Class Name: I/O BUS

Effective Band Width: 10000000 Bytes/Second

"Tlient Processors Variables List:

Variable Name: Class Restriction:

vjfirsLdma DMA

v_seconddma DMA

**Bus Class Instantiation List:

****Bus Name: iojbus

Bus Class: I/O BUS

*****Client Processors Variables Assignment List:

Variable Name: => Assigned Value:

v_first-dma => dmal

v_seconddma => dma_2

A-6

A.2 Task Class Definitions

This section presents the three Task Class definitions constructed for the Test Case

example. This includes the full Segment definitions (including all transfer

functions) and Thread definitions.

A.2.1 Tracking

Task Class Name: TRACKING

Processor Ensemble Name: TEST CASE

Author: SPARTA

Creation Date: 07/24/89 Validated: FALSE

Last Validation Date: 07/26/89 Last Validation Time: 14:27:26.68

"Input Start Time Dependency Variables List:

Variable Name: Task Class Restriction:

Iv-prior.ephemeris.gen EPHEMERIS GENERATION

"Output Start Time Dependency Variables List-

Variable Name: Task Class Restriction:

v-subsequent-ephem-gen EPHEMERIS GENERATION

"Segment Class Table

**Segment Class Name: COMPUTE PHASE FIVE

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Application Code

"'Transfer Functions List:

N = Data Set Size:

A-7

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 5.OOOOOOE-01 QI = 3.OOOOOOE-05 LI = O.OOOOOOE+00

Q2 = 5.OOOOOOE-04 L2 = 6.OOOOOOE-05

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vj1ocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 7.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = 3.200000E+02 L2 = 1.OOOOOOE+01

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 1.800000E+02 LI = O.OOOOOOE+00

Q2 = 6.500000E+03 12 = 4.200000E+02

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coefidents:

List Empty -

**Segment Class Name: CLEAN UP

Target Processor Class: CPU

A-8

I

Number of Instantiations: 2

Segment Class Type: Operating System

"Transfer Functions List:

N = Data Set Size:

R - Data Set Size Reduction Factor:

M-R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.000000E+00 Qi = 3.OOOOOOE-04 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v_local_mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 8.OOOOOOE+03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = I.OOOOOOE+00 Q1 = 4.500000E+03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = 0.000000E+00

Q3 = 0.000000E+00

A-9

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

**Segment Class Name: STORE BACK TO GLOBAL MEMORY

Target Processor Class: DMA

Number of Instantiations: 2

Segment Class Type: Application Code

***Transfer Functions List:

N - Data Set Size:

R -Data Set Size Reduction Factor:

M =R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 5.OOOOOE-01 Q1 = l.OOOOOOE-03 Li = O.OOOOOOE+00

Q2 = 5.OOOOOOE-05 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.000000E+04 Li = 0.000000E+00

Q2 = 2.000000E+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

A-10

________i

R - 5.OOOOOOE-01 Q1 = O.OOOOOOE+O0 LI - O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vilocal_mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.OOOOOOE+03 Li = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 U = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 5.OOOOOOE-01 Qi = 5.OOOOOOE+03 Li = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: viobus

Bus Variable Class Restriction: I/O BUS

R = 5.OOOOOOE-01 Q1 = 5.OOOOOOE+03 Li = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

***Segment Class Name: COMPUTE PHASE SIX

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Application Code

A-1I

***Transfer Functions List:

N = Data Set Size:

R - Data Set Size Reduction Factor:

M=R*N:

F(N) w G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 5.000000E-01 Q1 = 8.OOOOOOE-03 Li = O.OOOOOOE+00

Q2 = 7.OOOOOOE-05 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.OOOOOOE+04 LI = O.OOOOOOE+00

Q2 = 3.OOOOOOE+02 12 = O.OOOOOOE+00

Q3 = 0.000000E+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 8.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = 9.100000E+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus 1/0 Requirements Transfer Function Coeficients:

List Empty -

A-12

"**Segment Class Name: COMPUTE PHASE FOUR

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Application Code

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 5.OOOOOOE-01 Q1 = 1.800000E-04 LI = 0.000000E+00

Q2 = 7.200000E-05 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = 3.OOOOOOE+02 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: v-localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.000000E-01 Qi = 2.200000E+03 LI = O.OOOOOOE+00

Q2 = 6.600000E+02 12 = O.OOOOOOE+0

Q3 = O.OOOOOOE+00

A-13

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

'Segment Class Name: RECEIVE DATA

Target Processor Class: DMA

Number of Instantiations: 2

Segment Class Type: Application Code

""Transfer Functions List:

N - Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Qi + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.500000E-01 Qi = 2.OOOOOOE-06 Li = O.OOOOOOE+00

Q2 = 1.470000E-04 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v_local mem

Memory Variable Class Restriction: LOCAL MEMORY

R - 1.500000E-01 Q1 - 5.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = 9.000000E+02 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v-globaljmem

Memory Variable Class Restriction: GLOBAL MEMORY

A-14

R - I.OOOOOOE+O0 QI - O.OOOOOOE+OO Li = O.OOOOOOE+O0

Q2 = O.O00000E+O0 L2 = O.OOOOOOE+O0

Q3 = O.OOOOOOE+O0

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: v_localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.500000E-01 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = 2.200000E+02 L2 = O.OOOOOOE+O0

Q3 = O.OOOOOOE+oo

Memory Variable Name: v globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.000000E+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = 0.000000E+00 L2 = O.OOO0E+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: viobus

Bus Variable Class Restriction: I/O BUS

R = 1.00000E+00 Q1 = O.OOOOOOE+00 Li = 0.000000E+00

Q2 = O.OOOOOOE+00 12 = O.0OOOOE+00

Q3 = O.OOOOOOE+00

***Segment Class Name: SEND DATA

Target Processor Class: DMA

Number of Instantiations: 2

Segment Class Type: Application Code

A-15

""Transfer Functions List:

N - Data Set Size:

R - Data Set Size Reduction Factor:

M -R *N:

F(N) - G(M) = Q1 + (Q2 *M) + (03 *M**2) + (LI +(L2 *M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1500000E-01 Q1 = 2.OOOOOOE-06 LI = O.OOOOOOE+OO

Q2 = 1.470000E-05 L2 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocal-mnm

Memory Variable Class Restriction: LOCAL MEMORY

R = 1 .500000E-O1 Q1 = 5.OOOOOOE+04 LI = O.OOOOOOE+OO

Q2 = 6.700000E+02 12 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory Variable Name: v...global-mem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+OO Q1 = O.OOOOOOE+OO Li = O.OOOOOOE+OO

Q2 = O.OOOOOOE+OO 12 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: v-local-mem

Memory Variable Class Restriction: LOCAL MEMORY

A-16

R - 1-00E-01 Q1 = O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 = 2.200000E+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.000000E+OO Q1 = O.OOOOOOE+OO Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+0O 12 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+00

Bus 1/0 Requirements Transfer Function Coeficients:

Bus Variable Name: vio_bus

Bus Variable Class Restriction: I/O BUS

R = 1.500000E-01 Q1 = O.OOOOOOE+O0 Li = 0.000000E+00

Q2 = 2.200000E+02 L2 = O.OOOOOOE+0O

Q3 = O.OOOOOOE+O0

'Segment Class Name: SEND DATA LAG

Target Processor Class: DMA

Number of Instantiations: 2

Segment Class Type: Application Code

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + Q2 * M) + (Q3 * M**2) + (L1 +(12 * M))LOG2(M)

A-17

Run Time Transfer Function Coeficients:

R = i.OOOOOOE+OO Q1 = 7.OOOOOOE-05 Li = O.OOOOOOE+OO

Q2 = O.OOOOOOE+OO L2 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v-local-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-Oi Q1 = 5.OOOOOOE+04 Li = O.OOOOOOE+OO

Q2 = 2-OOOOOOE+02 12 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory Variable N~ame: v...global-mem

Memory Variable Class Restriction: GLOBAL MEMORY

R = i.OOOOOOE+OO Qi = 0.000000E+00 Li = O.OOOOOOE+OO

Q2 = O.OOOOOOE+OO 12 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: v-local-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = i.OOOOOOE+OO Qi = 1.300000E+03 Li = O.OOOOOOE+OO

Q2 = O.OOOOOOE+OO 12 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory Variable Name: v...global-mem

Memory Variable Class Restriction: GLOBAL MEMORY

A-i8

R = 1.000000E+00 Q1 = O.OOOOOOE+00 Li = O.OOOOOOE+00
Q2 = O.OOOOOOE+00 12 - O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: v io_bus

Bus Variable Class Restriction: I/O BUS

R = 1.000000E+00 QI = 1.200000E+03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

**Segment Class Name: COMPUTE PHASE THREE

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Application Code

**Transfer Functi6ns List:

N = Data Set Size:

R - Data Set Size Reduction Factor:

M =R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(12 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 5.OOOOOOE-01 Q1 = 5.OOOOOOE-05 LI = O.OOOOOOE+00

Q2 = 1.500000E-05 12 = O.OOOOOOE+00

Q3 = Z1000OOE-06

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vJocal mem

A-19

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.OOOOOOE+04 LI = O.OOOOOOE+00

Q2 = 2.700000E+02 L2 = O.OOOOOOE+00

Q3 = 3.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal-mem

Memory Variable Ciass Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 QI = 8.500000E+02 Li = O.OOOOOOE+00

Q2 = 1.050000E+02 12 = O.OOOOOOE+00

Q3 = 5.400000E+01

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

*"Segment Class Name: STATUS

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Operating System

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M =R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 M**2) + (L1 +(L2 M))LOG2(M)

A-20

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 Q1 = 3.700000E-03 L1 = O.OOOOOOE+00
Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 7.OOOOOOE+04 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

'Segment Class Name: COMPUTE PHASE TWO

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Application Code

A-21

'Transfer Functions List:

N - Data Set Size:

R - Data Set Size Reduction Factor:

M R*N:

F(N) - G(M) - QI + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 5.OOOOOOE-01 Q1 = 1.500000E-03 Li = O.OOOOOOE+00

Q2 = 9.OOOOOOE-05 12 = 2.200000E-05

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.000000E+04 Li = O.OOOOOOE+00

Q2 = 2.500000E+02 2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 2.600000E+04 Li = O.OOOOOOE+00

Q2 = 7.600000E+02 12 = 4.100000E+02

Q3 = O.OOOOOOE+00

Bus 1/0 Requirements Transfer Function Coeficients:

- List Empty -

'A-22

!

***Segment Class Name: COMPUTE PHASE ONE

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Application Code

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) - G(M) = Qi + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 5.OOOOOOE-01 Q1 = 7.OOOOOOE-04 Li = O.OOOOOOE+00

Q2 = 4.600000E-04 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocal mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 QI = 5.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: v.local-mem

Memory Va -. 'e Class Restriction: LOCAL MEMORY

R - 5.OOOOOOE-01 Qi = 7.500000E+03 Li - O.OOOOOOE+00

Q2 = 1.320000E+04 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-23

Bus I/O Requirements Transfer Function Coeficients:

-List Empty -

"Segment Class Name: GET DATA

Target Processor Class: DMA

Number of Instantiations; 2

Segment Class Type: Application Code

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M =R *N:

F(N) = G(M) = Q1 + -(Q2 *M) + (Q3 *M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 5.OOOOOOE-01 Q1 = 7.OOOOOOE-04 LI = O.OOOOOOE+OO

Q2 = 5.OOOOOOE-O5 L2 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v-local-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = O.OOOOOOE+OO Li = O.OOOOOOE+OO

Q2 = O.OOOOOOE+OO 12 = 0.000000E+00

Q3 = O.OOOOOOE+OO

A-24

Memory Variable Name: vglobal mem

Memory Variable Class Restriction: GLOBAL MEMORY

R - 5.OOOOOOE-01 QI = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory I/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.OOOOOOE+03 LI = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v-global-mem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 5.OOOOOOE-01 QI = 5.OOOOOOE+03 LI = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: vjio_bus

Bus Variable Class Restriction: I/O BUS

R - 5.OOOOOOE-01 Q1 = 5.OOOOOOE+03 LI = O.OOOOOOE+00

Q2 = 2.OOOOOOE+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

***Segment Class Name: SET UP TABLE

Target Processor Class: CPU

A-25

Number of Instantiations: 2

Segment Class Type: Application Code

"*Transfer Functions List:

N - Data Set Size:

R - Data Set Size Reduction Factor:

M R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 5.OOOOOOE-01 Q1 = 4.500000E-03 Li = O.OOOOOOE+00

Q2 = 2.OOOOOOE-05 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 5.000000E+04 LI = O.OOOOOOE+00

Q2 = 2.000000E+02 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: v localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 5.OOOOOOE-01 Q1 = 3.800000E+04 Li = O.OOOOOOE+00

Q2 = 1.840000E+02 12 = 0.000000E+00

Q3 = O.OOOOOOE+00

A-26

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

**Segment Class Name: FORK PROCESS

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Operating System

""Transfer Functions List:

N = Data Set Size:

R -Data Set Size Reduction Factor:

M =R*N:

F(N) = G(M) -Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 Q1 = 1.000000E-03 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v_localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = 8.000000E+03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-27

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 1.OOOOOOE+04 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 2 = O.OOOOOOE+00

Q3= O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

***Segment Class Name: LOAD INSTRUCTIONS

Target Processor Class: DMA

Number of Instantiations: 2

Segment Class Type: Operating System

*"Transfer Functions List:

N = Data Set Size:

R Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.000000E+00 Q1 = 2.OOOOOOE-02 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v.local-mem

Memory Variable Class Restriction: LOCAL MEMORY

A-28

R = 1.OOOOOOE+00 Q1 = 4.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = 0.000000E+00

Memory Variable Name: v.global mere

Memory Variable Class Restriction: GLOBAL MEMORY

R - 1.000000E+00 Qi = 3.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = i.OOOOOOE+00 QI = 3.200000E+04 Li = 0.000000E+00

Q2 = O.OOOOOOE+00 1.2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v-globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R -. 000000E+00 Qi = 3.200000E+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: v io-bus

Bus Variable Class Restriction: I/O BUS

R = 1.000000E+00 Q1 = 3.300000E+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = 0.000000E+00

A-29

'Segment Class Name: SYSTEM INITIALIZATION

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Operating System

""Transfer Functions List:

N - Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.000000E+00 Q1 = 3.OOOOOOE-03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 8.OOOOOOE+03 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

A-30

R - 1.000000E+00 Q1 = 5.000000E+04 LI = 0.000000E+00

Q2 = 0.000000E+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

***Segment Class Name: DMA JOIN

Target Processor Class: DMA

Number of Instantiations: 9

Segment Class Type: Join

****Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M-R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 Li = O.OOOOOOE+00

Q2 = 0.000500E+00 L2 = O.OOOOOOE+00

Q3 = 0.000000E+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = 0.000000E+00

A-31

Memory Variable Name: vglobalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 Li = O.OOOOOOE+00
Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: v localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v-globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus 1/0 Requirements Transfer Function Coeficients:

Bus Variable Name: vio bus

Bus Variable Class Restriction: I/O BUS

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-32

**Segment Class Name: CPU JOIN

Target Processor Class: CPU

Number of Instantiations: 6

Segment Class Type: Join

""Transfer Functions List-

N - Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v-local-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+O0 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vilocal mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+O0

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-33

Bus I/0 Requirements Transfer Function Coeficients:

- List Empty -

"Thread Table

***Thread Name: Third Tracking Thread: CPU

Target Processor: cpu2

Target Processor Class: CPU

""Segment List:

Segment Name: Thread 3 - Segment 1

Segment Class: SYSTEM INITIALIZATION

Segment Type: Operating System

Segment Name: Thread 3 - Segment 2

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment. Thread 4 - Segment 2

Predecessor Thread: Fourth Tracking Thread: DMA

Segment Name: Thread 3 - Segment 3

Segment Class: FORK PROCESS

Segment Type: Operating System

Segment Name: Thread 3 - Segment 4

Segment Class: SET UP TABLE

Segment Type: Application Code

I
A-34I

I

Segment Name: Thread 3 - Segment 5

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment. Thread 4 - Segment 4

Predecessor Thread: Fourth Tracking Thread: DMA

Segment Name: Thread 3 - Segment 6

Segment Class: COMPUTE PHASE ONE

Segment Type: Application Code

Segment Name: Thread 3 - Segment 7

Segment Class: COMPUTE PHASE TWO

Segment Type: Application Code

Segment Name: Thread 3 - Segment 8

Segment Class: STATUS

Segment Type: Operating System

Segment Name: Thread 3 - Segment 9

Segment Class: COMPUTE PHASE THREE

Segment Type: Application Code

Segment Name: Thread 3 - Segment 10

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment Thread 4 - Segment 6

Predecessor Thread: Fourth Tracking Thread: DMA

A-35

Segment Name: Thread 3 - Segment 11

Segment Class: COMPUTE PHASE FOUR

Segment Type: Application Code

Segment Name: Thread 3 - Segment 12

Segment Class: COMPUTE PHASE FIVE

Segment Type: Application Code

Segment Name: Thread 3 - Segment 13

Segment Class: COMPUTE PHASE SIX

Segment Type: Application Code

Segment Name: Thread 3 - Segment 14

Segment Class: CLEAN UP

Segment Type: Operating System

***Thread Name: First Tracking Thread: CPU

Target Processor: cpul

Target Processor Class: CPU

****Segment List:

Segment Name: Thread 1 - Segment I

Segment Class: SYSTEM INITIALIZATION

Segment Type: Operating System

Segment Name: Thread 1 - Segment 2

Segment Class: CPU JOIN

Segment Type: Join

A-36

Predecessor Segment: Thread 2 - Segment 2

Predecessor Thread: Second Tracking Thread: DMA

Segment Name: Thread 1 - Segment 3

Segment Class: FORK PROCESS

Segment Type: Operating System

Segment Name: Thread I - Segment 4

Segment Class: SET UP TABLE

Segment Type: Application Code

Segment Name: Thread 1 - Segment 5

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment: Thread 2 - Segment 4

Predecessor Thread: Second Tracking Thread: DMA

Segment Name: Thread 1 - Segment 6

Segment Class: COMPUTE PHASE ONE

Segment Type: Application Code

Segment Name: Thread 1 - Segment 7

Segment Class: COMPUTE PHASE TWO

Segment Type: Application Code

Segment Name: Thread 1 - Segment 8

Segment Class: STATUS

Segment Type: Operating System

A-37

Segment Name: Thread 1 - Segment 9

Segment Class: COM[PUTE PHASE TH]REE

Segment Type: Application Code

Segment Name: Thread 1 - Segment 10

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment:. Thread 2 - Segment 9

Predecessor Thread: Second Tracking Thread: DMA

Segment Name: Thread 1 - Segment 11

Segment Class: COMPUTE PHASE FOUR

Segment Type: Application Code

Segment Name: Thread 1 - Segment 12

Segment Class: COMPUTE PHASE FIVE

Segment Type: Application Code

Segment Name: Thread 1 - Segment 13

Segment Class: COMPUTE PHASE SIX

Segment Type: Application Code

Segment Name: Thread 1 - Segment 14

Segment Class: CLEAN UP

Segment Type: Operating System

***Thread Name: Second Tracking Thread: DMA

Target Processor: dma l

Target Processor Class: DMA

A-38

****Segment List:

Segment Name: Thread 2 - Segment I

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment: Thread 1 - Segment 1

Predecessor Thread: First Tracking Thread: CPU

Segment Name: Thread 2 - Segment 2

Segment Class: LOAD INSTRUCTIONS

Segment Type: Operating System

Segment Name: Thread 2 - Segment 3

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment: Thread 1 - Segment 3

Predecessor Thread: First Tracking Thread: CPU

Segment Name: Thread 2 - Segment 4

Segment Class: GET DATA

Segment Type: Application Code

Segment Name: Thread 2 - Segment 5

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment: Thread 1 - Segment 9

Predecessor Thread: First Tracking Thread: CPU

A-39

Segment Name: Thread 2 - Segment 6

Segment Class: SEND DATA LAG

Segment Type: Application Code

Segment Name: Thread 2 - Segment 7

Segment Class: SEND DATA

Segment Type: Application Code

Segment Name: Thread 2 - Segment 8

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment. Thread 4 - Segment 7

Predecessor Thread: Fourth Tracking Thread: DMA

Segment Name: Thread 2 - Segment 9

Segment Class: RECEIVE DATA

Segment Type: Application Code

Segment Name: Thread 2 - Segment 10

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment: Thread 1 - Segment 13

Predecessor Thread: First Tracking Thread: CPU

Segment Name: Thread 2 - Segment 11

Segment Class: STORE BACK TO GLOBAL MEMORY

Segment Type: Application Code

A-40

***Thread Name. Fourth Tracking Thread: DMA

Target Processor: dma_2

Target Processor Class: DMA

""Segment List:

Segment Name: Thread 4 - Segment I

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment- Thread 3 - Segment I

Predecessor Thread: Third Tracking Thread: CPU

Segment Name: Thread 4 - Segment 2

Segment Class: LOAD INSTRUCTIONS

Segment Type: Operating System

Segment Name: Thread 4 - Segment 3

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment- Thread 3 - Segment 4

Predecessor Thread: Third Tracking Thread: CPU

Segment Name: Thread 4 - Segment 4

Segment Class: GET DATA

Segment Type: Application Code

Segment Name: Thread 4 - Segment 5

Segment Class: DMA JOIN

Segment Type: Join

A-41

Predecessor Segment: Thread 2 - Segment 6

Predecessor Thread: Second Tracking Thread: DMA

Segment Name: Thread 4 - Segment 6

Segment Class: RECEIVE DATA

Segment Type: Application Code

Segment Name: Thread 4 - Segment 7

Segment Class: SEND DATA LAG

Segment Type: Application Code

Segment Name: Thread 4 - Segment 8

Segment Class: SEND DATA

Segment Type: Application Code

Segment Name: Thread 4 - Segment 9

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment- Thread 3 - Segment 13

Predecessor Thread: Third Tracking Thread: CPU

Segment Name: Thread 4 - Segment 10

Segment Class: STORE BACK TO GLOBAL MEMORY

Segment Type: Application Code

A42

A.22 Ephemeris Generation

Task Class Name: EPHEMERIS GENERATION

Processor Ensemble Name: TEST CASE

Author: SPARTA

Creation Date: 07/25/89 Validated: TRUE

Last Validation Date: 07/25/89 Last Validation Time: 14:08:37.36

"Input Start Time Dependency Variables List:

Variable Name: Task Class Restriction:

v-prior-tracking TRACKING

"Output Start Time Dependency Variables List:

Variable Name: Task Class Restriction:

v.subsequenttracking TRACKING

"Segment Class Table

'Segment Class Name: PROCESS DATA

Target Processor Class: CPU

Number of Instantiations: 1

Segment Class Type: Application Code

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M =R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

A-43

Run Time Transfer Function Coeficients:

R = 1.000000E+O0 Q1 = 3.OOOOOOE-03 Li = O.OOOOOOE+00

Q2 = 9.200000E-04 12 = O.O00000E+O0

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 1.800000E+04 LI = O.OOOOOOE+00
Q2 = 8.OOOOOOE+01 12 = 0.000000E+00

Q3 = O.OOOOOOE+O0

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.O00000E+00 Q1 = 5.400000E+04 LI = O.OOOOOOE+00

Q2 = 1.530000E+04 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

***Segment Class Name: CPU JOIN

Target Processor Class: CPU

Number of Instantiations: 2

Segment Class Type: Join

A-44 I

""Transfer Functions List:

N - Data Set Size:

R - Data Set Size Reduction Factor:

M-R'N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M*'2) + (LI +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.000000E+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+O0

Q2 = O.OOOOOOE+00 L2 = O.0OOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.00000E+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOE+OO 12= 0000.OE+00

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 QI = O.OOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+O0 L2 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

A-45

***Segment Class Name: DMA JOIN

Target Processor Class: DMA

Number of Instantiations: 3

Segment Class Type: Join

""Transfer Functions List:

N = Data Set Size:

R - Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.000000E+00 Q1 = O.OOOOOOE+00 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 2= O-.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.000000E+00 QI = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-46

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: vjocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R - 1.000000E+00 Q1 = O.OOOOOOE+00 LI - O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = 0.000000E+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v..globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R - 1.OOOOOOE+O0 Q1 = O.OOOOOOE+O0 LI = O.O00000E+O0

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: vjio bus

Bus Variable Class Restriction: I/O BUS

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

***Segment Class Name: SYSTEM INITIALIZATION

Target Processor Class: CPU

Number of Instantiations: 1

Segment Class Type: Operating System

A-47

""Transfer Functions List:

N -Data Set Size:

R =Data Set Size Reduction Factor:

M R* N:

F(N) - G(M) - Q1 + (Q2 *M) + (Q3 * M*112) + (LI +(L2 *M))LOG2(M)

Run Time Transfer function Coeficients:

R = 1.OOOOOOE+OO Q1 = 3.OOOOOOE-03 LI = O.OOOOOOE+OO

Q2 = O.OOOOOOE+OO L2 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocal-inem

Memory Variable Class Restriction: LOCAL MEMORY

R = I.OOOOOOE+OO Q1 = 8.OOOOOOE+03 LI = O.OOOOOOE+OO

Q2 = O.OOOOOOE+OO 12 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: v local-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 5.OOOOOOE+04 LI = O.OOOOOOE+OO

Q2 = O.OOOOOOE+OO 12 = O.OOOOOOE+OO

Q3 = O.OOOOOOE+OO

Bus 1/0 Requirements Transfer Function Coefidients:

-List Empty -

A48

***Segment Class Name: LOAD INSTRUCTIONS

Target Processor Class: DMA

Number of Instantiations: 1

Segment Class Type: Operating System

*Transfer Functions List:

N - Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 Q1 = 2.OOOOOOE-02 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vJocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R - 1.OOOOOOE+00 Q1 = 4.000000E+04 LI O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v-globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R a 1.OOOOOOE+00 Q1 = 3.OOOOOOE+04 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-49

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R - 1.OOOOOOE+00 Q1 = 3.200000E+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v-global-mem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = 3.200000E+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: vjo_bus

Bus Variable Class Restriction: I/O BUS

R = .000000E+00 Q1 = 3.300000E+04 LI = 0.00000E+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

***Segment Class Name: FORK PROCESS

Target Processor Class: CPU

Number of Instantiations: 1

Segment Class Type: Operating System

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

A-50

F(N) - G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(1.2 * M))LOG2(M)

Run Time Transfer Function Coeficients:
SR = 1.000000E+00 Q1 = 1.000000E-03 L1 -- 0.000000E+00

Q2 - O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v.local-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = 8.000000E+03 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = 0.000000E+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 1.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus 1/0 Requirements Tranrt.; F'nrction Coefidents:

- List Empty -

"*Segment Class Name: CLEAN UP

Target Processor Class: CPU

Number of Instantiations: 1

Segment Class Type: Operating System

A-51

""Transfer Functions List:

N Data Set Size:

R - Data Set Size Reduction Factor:

MmR*N:

F(N) - G(M) = Q1 + (Q2 * M) + (Q3 * M*2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 Q1 = 3.OOOOOOE-04 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 8.OOOOOOE+03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = 0.000000E+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: v-localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 4.500000E+03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/0 Requirements Transfer Function Coeficients:

- List Empty -

A-52

**Segment Class Name: GET DATA

Target Processor Class: DMA

Number of Instantiations: 1

Segment Class Type: Application Code

""Transfer Functions List-

N = Data Set Size:

R f Data Set Size Reduction Factor:

M=R*N:

F(N) - G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R f 1.OOOOOOE+00 Q1 = 1.OOOOOOE-03 LI = O.OOOOOOE+00

Q2 = 7.500000E-06 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v-localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 1.800000E+04 Li = O.OOOOOOE+00

Q2 = 6.OOOOOOE+01 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = 1.000000E+04 LI = O.OOOOOOE+00

Q2 = 6.OOOOOOE+01 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-53

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal_mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 QI = 3.OOOOOOE+02 LI = O.OOOOOOE+00

Q2 a 6.000000E+01 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v global-mem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 QI = 3.OOOOOOE+02 LI = O.OOOOOOE+00

Q2 = 6.OOOOOOE+01 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: viobus

Bus Variable Class Restriction: I/O BUS

R = 1.OOOOOOE+00 Q1 = 8.OOOOOOE+02 Li = O.OOOOOOE+00
Q2 = 6.OOOOOOE+01 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

*"Segment Class Name: STORE DATA

Target Processor Class: DMA

Number of Instantiations: I

Segment Class Type: Application Code

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

A-54

F(N) = G(M) a QI + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.000000E+00 Q1 = 1.000000E-03 Li = O.OOOOOOE+00

Q2 = 7.500000E-06 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v-local mem

Memory Variable Class Restriction: LOCAL MEMORY

R w 1.000000E+00 Q1 = 1.000000E+04 Li = O.OOOOOOE+00

Q2 = 6.000000E+01 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.global-mem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = 1.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 - 6.OOOOOOE+01 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = i.OOOOOOE+00 Q1 = 3.OOOOOOE+02 Li = O.OOOOOOE+00

Q2 = 6.OOOOOOE+01 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.global-mem

Memory Variable Class Restriction: GLOBAL MEMORY

A-55

R - 1.000000E+0 Qi = 3.OOOOOOE+02 LI = O.OOOOOOE+00

Q2 = 6.OOOOOOE+01 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: vjio-bus

Bus Variable Class Restriction: I/O BUS

R = 1.000000E+00 Q1 = 8.OOOOOOE+02 LI = O.OOOOOOE+00

Q2 = 6.OOOOOOE+01 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

"Thread Table

***Thread Name: Ephem,_Gen First Thread: CPU

Target Processor: cpujl

Target Processor Class: CPU

*"*Segment List:

Segment Name: Thread 1 - Segment 1

Segment Class: SYSTEM INITIALIZATION

Segment Type: Operating System

Segment Name: Thread 1 - Segment 2

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment. Thread 2 - Segment 2

Predecessor Thread: EphemGen Second Thread: DMA

A-56

I

Segment Name: Thread 1 - Segment 3

Segment Class: FORK PROCESS

Segment Type: Operating System

Segment Name: Thread 1 - Segment 4

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment: Thread 2 - Segment 4

Predecessor Thread: EphemGen Second Thread: DMA

Segment Name: Thread 1 - Segment 5

Segment Class: PROCESS DATA

Segment Type: Application Code

Segment Name: Thread 1 - Segment 6

Segment Class: CLEAN UP

Segment Type: Operating System

'Thread Name: EphemGen Second Thread: DMA

Target Processor: dma-1

Target Processor Class: DMA

""Segment List:

Segment Name: Thread 2 - Segment 1

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment. Thread I - Segment 1

Predecessor Thread: EphemGen First Thread: CPU

A-57

Segment Name: Thread 2 - Segment 2

Segment Class: LOAD INSTRUCTIONS

Segment Type: Operating System

Segment Name: Thread 2 - Segment 3

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment. Thread 1 - Segment 3

Predecessor Thread: Ephem Gen First Thread: CPU

Segment Name: Thread 2 - Segment 4

Segment Class: GET DATA

Segment Type: Application Code

Segment Name: Thread 2 - Segment 5

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment- Thread 1 - Segment 5

Predecessor Thread: EphemGen First Thread: CPU

Segment Name: Thread 2 - Segment 6

Segment Class: STORE DATA

Segment Type: Application Code

A-58

A23 Sort and Search

Task Class Name: BIG SORT/SEARCH

Processor Ensemble Name: TEST CASE

Author: SPARTA

Creation Date: 07/25/89 Validated: TRUE

Last Validation Date: 07/26/89 Last Validation Time: 08:59:15.89

"Input Start Time Dependency Variables List:

Variable Name: Task Class Restriction:

- List Empty -

"Output Start Time Dependency Variables List:

Variable Name: Task Class Restriction:

- List Empty -

"Segment Class Table

***Segment Class Name: SORT DATA

Target Processor Class: CPU

Number of Instantiations: 1

Segment Class Type: Application Code

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M-R*N:

F(N) - G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

A-59

R = 1.OOOOOOE+00 Q1 = 5.120000E+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = .OOOOOOE+00

Q3 = 0.000000E+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 QI = 1.020000E+06 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 7.420000E+07 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

'Segment Class Name: PROCESS DATA

Target Processor Class: CPU

Number of Instantiations: 4

Segment Class Type: Application Code

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

A-60

M=R*N:

F(N) - G(M) = Q1 + (Q2 * M) + (Q3 * M*42) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.000000E+00 QI = 1.800000E-01 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 QI = 3.020000E+06 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: v-localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = 3.300000E+06 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

***Segment Class Name: CPU JOIN

Target Processor Class: CPU

Number of Instantiations: 5

Segment Class Type: Join

A-61

""Transfer Functions List-

N = Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) w G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(12 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.000000E+00 Q1 = O.OOOOOOE+00 LI O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 O.OOOOOOE+O0

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+0O Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+OO

Q2 = O.OOOOOOE+00 12 = O OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Qi = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus 1/0 Requirements Transfer Function Coeficients:

- List Empty -

A-62

I

'Segment Class Name: DMA JOIN

Target Processor Class: DMA

Number of Instantiations: 6

Segment Class Type: Join

""Transfer Functions List:

N = Data Set Size:

R Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.000000E+00 Q1 = O.OOOOOOE+00 L1 O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.globalmen

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

A-63

Memory Variable Name: vjocaljmem

Memory Variable Class Restriction: LOCAL MEMORY

R - 1.OOOOOOE+O0 Q1 - O.OOOOOOE+O0 L - O.OOOOOOE+O0

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v..globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 LI O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: v_io_bus

Bus Variable Class Restriction: I/O BUS

R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 LI O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 O.OOOOOOE+00

Q3 = O.OOOOOOE+00

'Segment Class Name: SYSTEM INITIALIZATION

Target Processor Class: CPU

Number of Instantiations: 1

Segment Class Type: Operating System

*'Transfer Functions List:

N = Data Set Size:

R - Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = QI + (Q2 * M) + (Q3 * M**2) + (LI +(L2 * M))LOG2(M)

A-64

Run Time Transfer Function Coeficients:

R - 1.000000E+00 Q1 = 3.OOOOOOE-03 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: v-local_mem

Memory Variable Class Restriction: LOCAL MEMORY

R - 1.000000E+00 Qi = 8.OOOOOOE+03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+O0

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: v-local-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = 5.OOOOOOE+04 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

"*Segment Class Name: LOAD INSTRUCTIONS

Target Processor Class: DMA

Number of Instantiations: 1

Segment Class Type: Operating System

"'"Transfer Functi6ns List:

A-65

N - Data Set Size:

R Data Set Size Reduction Factor:

M R*N:

F(N) - G(M) = Q1 + (Q2 * M) + (Q3 * M.*2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.000000E+00 Q1 = 2.OOOOOOE-02 LI O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = 4.OOOOOOE+04 Li = O.OOOOOOE+00

Q2 = 0.00C00E+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v.globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.000000E+00 Q1 = 3.OOOOOOE+04 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: v.local-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = 3.200000E+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-66

I

Memory Variable Name: v.globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = i.OOOOOOE+00 Qi = 3.200000E+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = 0.000000E+00

Bus 1/0 Requirements Transfer Function Coeficients:

Bus Variable Name: v io_bus

Bus Variable Class Restriction: I/O BUS

R = 1.OOOOOOE+00 Q1 = 3.300000E+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = 0.000000E+00

'Segment Class Name: FORK PROCESS

Target Processor Class: CPU

Number of Instantiations: 1

Segment Class Type: Operating System

""Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 QI = 1.OOOOOOE-03 Li O.OOOOOOE+00

Q2 = O.OOOOOOE+00 2 O.OOOOOOE+00

Q3 = O.OOOOOOE+00

A-67

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORx

R - 1.OOOOOOE+00 Qi = 8.OOOOOOE+03 L1 = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R - 1.000000E+00 Q1 = 1.000000E+04 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

- List Empty -

'Segment Class Name: CLEAN UP

Target Processor Class: CPU

Number of Instantiations: 1

Segment Class Type: Operating System

*"Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (LI +(L2 * M))LOG2(M)

A-68

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 Q1 = 3.OOOOOOE-04 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+0O 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: vlocal-mem

Memory Variable Class Restriction: LOCAL MEMORY

R = I.OOOOOOE+00 Q1 = 8.OOOOOOE+03 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 1.2 = O.OOOOOOE+00

Q3 = 0.00000E+0O

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: vjlocal mem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = 4.500000E+03 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+0O 12 = O.OOOOOOE+00

Q3 = O.OOOOOOE+O0

Bus I/O Requirements Transfer Function Coeficients:

- List Empty-

***Segment Class Name: GET DATA

Target Processor Class: DMA

Number of Instantiations: 4

Segment Class Type: Application Code

""Transfer Functions List:

N - Data Set Size:

A-69

R - Data Set Size Reduction Factor:

M R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.000000E+00 Q1 = 4.OOOOOOE-01 Li O-.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Vriable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+00 QI = 3.020000E+06 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v-globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.000000E+00 Q1 = 1.200000E+07 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: v_localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.000000E+06 Q1 = 3.000000E+06 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 12 = O.OOOOOOE+00

Q3 = 0.000000E+00

A-70

I

Memory Variable Name: v.globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = 3.OOOOOOE+06 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: v.iobus

Bus Variable Class Restriction: I/O BUS

R = 1.OOOOOOE+00 Q1 = 3.OOOOOOE+06 Li = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00
***Segment Class Name: STORE DATA

Target Processor Class: DMA

Number of Instantiations: 1

Segment Class Type: Application Code

****Transfer Functions List:

N = Data Set Size:

R = Data Set Size Reduction 'Factor:

M=R*N:

F(N) = G(M) = Q1 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 Q1 = 1.500000E-01 Li O.OOOOOOE+00

Q2 = O.OOOOOOE+00 2= .OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

A-71

Memory Variable Name: v-localmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = 3.020000E+06 LI = O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Variable Name: v..globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = 1.200000E+07 LI = O.OOOOOOE+00

Q2 = 0.000000E+00 2 = O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: vlocalmem

Memory Variable Class Restriction: LOCAL MEMORY

R = 1.OOOOOOE+00 Q1 = 1.000000E+06 LI = O.OOOOOOE+00

Q2 = 0.000000E+00 L2 = O.OOOOOOE+00

Q3 = 0.000000E+00

Memory Variable Name: v-globalmem

Memory Variable Class Restriction: GLOBAL MEMORY

R = 1.OOOOOOE+00 Q1 = 1.000000E+06 LI = O.OOOOOOE+00

Q2 = 0.000000E+00 L2 = 0.000000E+00

Q3 = O.OOOOOOE+00

Bus 1/0 Requirements Transfer Function Coeficients:

Bus Variable Name: viobus

Bus Variable Class Restriction: I/O BUS

R = 1.000000E+00 Q1 = 1.OOOOOOE+06 LI = O.OOOOOOE+00

A-72

I

Q2 = 0.000000E+00 12= .OOOOOOE+00

Q3 = O.OOOOOOE+00

"Thread Table

*"Thread Name: Sort/Search First Thread: CPU

Target Processor: cpu._2

Target Processor Class: CPU

""Segment List:

Segment Name: Thread 1 - Segment 1

Segment Class: SYSTEM INITIALIZATION

Segment Type: Operating System

Segment Name: Thread 1 - Segment 2

Segment Class: CPU JOIN

Segment Type: Join

Pidecessor Segment: Thread 2 - Segment 2

Predecessor Thread: Sort/Search Second Thread: DMA

Segment Name: Thread 1 - Segment 3

Segment Class: FORK PROCESS

Segment Type: Operating System

Segment Name: Thread 1 - Segment 4

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment Thread 2 - Segment 4

Predecessor Thread: Sort/Search Second Thread: DMA

A-73

Segment Name: Thread 1 - Segment 5

Segment Class: PROCESS DATA

Segment Type: Application Code

Segment Name: Thread 1 - Segment 6

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment: Thread 1 - Segment 6

Predecessor Thread: Sort/Search Second Thread: DMA

Segment Name: Thread 1 - Segment 7

Segment Class: PROCESS DATA

Segment Type: Application Code

Segment Name: Thread 1 - Segment 8

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment: Thread 2 - Segment 8

Predecessor Thread: Sort/Search Second Thread: DMA

Segment Name: Thread 1 - Segment 9

Segment Class: PROCESS DATA

Segment Type: Application Code

Segment Name: Thread 1 - Segment 10

Segment Class: CPU JOIN

Segment Type: Join

Predecessor Segment: Thead 2 - Segment 10

Predecessor Thread: Sort/Search Second Thread: DMA

A-74

Segment Name: Thread 1 - Segment 11

Segment Class: PROCESS DATA

Segment Type: Application Code

Segment Name: Thread 1 - Segment 12

Segment Class: SORT DATA

Segment Type: Application Code

Segment Name: Thread 1 - Segment 13

Segment Class: CLEAN UP

Segment Type: Operating System

***Thread Name: Sort/Search Second Thread: DMA

Target Processor: dma_2

Target Processor Class: DMA

""Segment List.-

Segment Name: Thread 2 - Segment 1

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment- Thread 1 - Segment 1

Predecessor Thread: Sort/Search First Thread: CPU

Segment Name: Thread 2 - Segment 2

Segment Class: LOAD INSTRUCTIONS

Segment Type: Operating System

Segment Name: Thread 2 - Segment 3

A-75

Segment Class: DMA JOIN

Segment Type: Join,

Predecessor Segment: Thread 1 - Segment 3

Predecessor Thread: Sort/Search First Thread: CPU

Segment Name: Thread 2 - Segment 4

Segment Class: GET DATA

Segment Type: Application Code

Segment Name: Thread 2 - Segment 5

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment: Thread 1 - Segment 5

Predecessor Thread: Sort/Search First Thread: CPU

Segment Name: Thread 1 - Segment 6

Segment Class: GET DATA

Segment Type: Application Code

Segment Name: Thread 2 - Segment 7

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment- Thread 1 - Segment 7

Predecessor Thread: Sort/Search First Thread: CPU

Segment Name: Thread 2 - Segment 8

Segment Class: GET DATA

Segment Type: Application Code

A-76

Segment Name: Thread 2 - Segment 9

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment. Thread 1 - Segment 9

Predecessor Thread: Sort/Search First Thread: CPU

Segment Name: Thead 2 - Segment 10

Segment Class: GET DATA

Segment Type: Application Code

Segment Name: Thread 2 - Segment 11

Segment Class: DMA JOIN

Segment Type: Join

Predecessor Segment- Thread 1 - Segment 12

Predecessor Thread: Sort/Search First Thread: CPU

Segment Name: Thread 2 - Segment 12

Segment Class: STORE DATA

Segment Type: Application Code

A-77

A.3 System Load Data Structures

This is the listing for the fourTasks instantiated to obtain the System Load using
System Load operations in EPERM. TheTask Class of eachTask is shown, as well as
prior and subsequentTask dependencies, data set size, and initial time offset.

Load Name: TESTCASE

Author: SPARTA

Load Creation Date: 07/26/89 Validated: TRUE

Load Validation Date: 07/26/89 Load Validation Time: 14:43:14.69

Load DefinitionProcessor Ensemble Data:

Processor Ensemble Name: TEST CASE

PE Validation Date: 07/26/89 PE Validation Time: 14:26:47.52

*Task List:

Task Name:Task Three

Task Class Name: BIG SORT/SEARCH

Processor Ensemble Name: TEST CASE

Task Minimum Start Time: 1.OOOOOOE-03

Task Data Set Size: 500

Task Class Author: SPARTA

Task Class Creation Date: 07/25/89

Task Class Validation Date: 07/26/89

Task Class Validation Time: 14:39:33.78

"Input Start Time Dependency Variables Assignments List:

A-78

Variable Name: ==> Assigned Value:
List Empty -

**Output Start Time Dependency Variables Assignments List:

Variable Name: ==> Assigned Value:

- List Empty -

Task Name: First Ephemeris Generation

Task Class Name: EPHEMERIS GENERATION

Processor Ensemble Name: TEST CASE

Task Minimum Start Time: 0.000000E+00

Task Data Set Size: 1300

Task Class Author: SPARTA

Task Class Creation Date: 07/25189

Task Class Validation Date: 07/26/89

Task Class Validation Time: 14:39:29.50

"Input Start Time Dependency Variables Assignments List:

Variable Name: ==> Assigned Value:

v_priortracking First Tracking

"Output Start Time Dependency Variables Assignments List-

Variable Name: ==> Assigned Value:

v._subsequenttracking Second Tracking

Task Name: Second -Tracking

Task Class Name: TRACKING

Processor Ensemble Name: TEST CASE

Task Minimum Start Time: 0.OOOOOOE+00

A-79

Task Data Set Size: 2600

Task Class Author: SPARTA

Task Class Creation Date: 07/24/89

Task Class Validation Date: 07/26/89

Task Class Validation Time: 14:39:23.79

"Input Start Time Dependency Variables Assignments List:

Variable Name: ==> Assigned Value:

v-prior.ephemeris-gen First Ephemeris Generation

"Output Start Time Dependency Variables Assignments List:

Variable Name: ==> Assigned Value:

v-subsequent-ephem-gen dummy

Task Name: First Tracking

Task Class Name: TRACKING

Processor Ensemble Name: TEST CASE

Task Minimum Start Time: 0.OOOOOOE+00

Task Data Set Size: 2000

Task Class Author: SPARTA

Task Class Creation Datp" 07/24/89

Task Class Validation Date: 07/26/89

Task Class Validation Time: 14:39:23.79

"Input Start Time Dependency Variables Assignments List:

Variable Name: ==> Assigned Value:

v-prior-ephemeris.gen dummy

"Output Start Time Dependency Variables Assignr, nts List:

A8A-80

Variable Name: ==> Assigned Value:

v.subsequent-ephem-gen First Ephemeris Generation

A-81

APPENDIX B

TRANSFER FUNCTION DESCIPTIONS

mmmm m m

PARAMETERS

Many parameters were used in deriving the transfer equations. Each of these

parameters, along with its assigned value for this scenario, is described on the following

pages. The parr-neters are divided into five categories: input, data sizes, other parameters,

scenario dependent, and timing estimates. Also included at the end of this section is a list

of derived expressions. These are provided to simplify the interpretation of the transfer

equation descriptions.

Input: Data size is the only random input variable allowed in PERM.

N = the number of objects to track

Data Sizes: These message and data file sizes were obtained from the Boeing Airborne

Optical Adjunct Mission Data Processor Algorithm Design Document, 30 January 1987.

The sizes are expressed in words.

BINPTR = Bin Pointer = 1
BUFFERI = Size of buffer on Ml = 286

BUFFER2 = Size of buffer on M2 = 856602

BUFFER3 = Size of buffer on M3 = 52671

BUFFER4 = Size of buffer on M4 = 251064

BUFFER5 = Size of buffer on M5 = 251064

CTM = Candidate Track Message = 92

ELCOR = Elevation Correction Message = 10

FTLF = Failed Track List File record=5

HTSM = Handover Track Status Message = 19

INA = Initiator Message = I

INR = Initiator Request Message =5
MPNMEM = Measurement Processing Nodal Memory record =23
MSM = Missed Sighting Message = 3

NHF = Navigational History File record = 105

OIF = Object Irradiance File record = 16

OSDF = Object State Data File record = 16

B-i

OSR = Object Sighting Report = 23

OTF = Object Track File record = 236

PCTM = Partial Candidate Track Message = 46
PRH = Prediction to Handover Message = 104
PWF = Predicted Window File record = 18
SSM = Star Sighting Message = 18
SSOS = Sensor Start of Scan Message = 13
TAM = Track Accept Message = 9
TARM = Track Accept/Reject Message = 9
TDRM = Track Dropped Message = I
TUM = Track Update Message = 19

Instruction Set Sizes: These are the instruction set sizes in words of each major
function of the Airborne Optical Adjunct Mission Data Processor. These sizes were

estimated from the current Boeing AOA MDP software version as of April 1989.

ARSIS = Angular Rate Smoothing instruction set size = 13056
CGPIS = Candidate Generation Process instruction set size = 21248
DESIS = Designation instruction set size = 3840
HOIS = Handover instruction set size = 15104

MPIS = Measurement Processing instruction set size = 9216
NAVIS = Navigational Update instruction set size = 8704

OSCIS = Object Screening instruction set size = 15872
OSOIS = Object Sor.L.ng instruction set size = 6144
PRIS = Prediction instruction set size = 45312
PWFIS = Predicted Window File Sort instruction set size = 3584

RDIS = Radiometric Initialization instruction set size = 21760
RDUIS = Radiometric Updzte instruction set size = 17664

RSMIS = Reference Star Matching instruction set size = 14848
TDMIS = Track Data Management instruction set size = 15872
TFIS = Trajectory Fitting instruction set size = 22272
TIIS = Track Initialization instruction set size = 28928
TUIS = Track Update instruction set size = 21760

B-2

Other Parameters: These are other parameters defined in the Boeing Airborne Optical

Adjunct Mission Data Processor Algorithm Design Document.

AOAPC = average Airborne Optical Adjunct architecture polling cycle

difference from the Advanced Onboard Signal Processor

architecture = 0.0000055 seconds

BINS = number of bins = (classified, For this scenario, an unclassified

estimation of 88 will be used.)

CII = number of initial initiators processed by CGP Lag = 3
FRAMES = number of frames retained = 8

NAVUP = number of times NAV updated per frame = 10

PSL = percent of stars processed in CGP Lag = 0.05

TII = number of initial initiators processed by TDM Initial Initiator

Loading = 3
T112 = number of initiators processed by TI Lag = 3

Scenario Dependent: These are parameters that are dependent either on the threat or

scenario chosen by the analyst.

ENDOC = percent cr correlated objects that are Endo = 0.1
EXOC = percent of correlated objects that are Exo = 0.9

ENDOT = percent of total accepted tracks that are Endo = 0.1

EXOT = percent of total accepted tracks that are Exo = 0.9

PBIN1 = percent of N objects in first bin = 0.05

PDT = percent of N objects that are dropped tracks = 0.03

PFCI = probability of failure in CGPI = 0.3

PFCII = probability of failure in CGPH = 0.2

PFCIII = probability of failure in CGPHI =0

PFTF = probability of failure in Track Fitting = 0.2

PFT = probability of failure in Track Initialization = 0.3

PFS = percent of N objects falsely classified as stars = 0.02

PLC = percent of correlated objects that are lethal = 0.2

PLT = percent of total accepted tracks that are lethal = 0.2

POC = percent of objects correlated = 0.7

POMS = percent of N that are missed sightings = 0.03

B-3

PTACT = previous window's total accepted tracks (assumed same as
TACT) = 0.203347N

STARS = number of stars identified = 30

TN = number of track nodes = 2

Timing Estimates: These were extracted from a United States Army Strategic Defense
Command timing study of the Airborne Optical Adjunct (AOA) Mission Data Processor
(MDP), AOA-DP-SIM MDP Simulation Final Report, Teledyne Brown Engineering, 12
April 1988. This is a list of the times in seconds required to process each of the specific

paths of the AOA MDP software. The scheduling execution/overhead costs are included in

these estimates.

ARSCOST = Angular Rate Smoothing cost = 0.0004

CGPICOST = cost for CGPI = 0.082713
CGP2COST = cost for CGP2 = 0.082713

CGP3COST = cost for CGP3 = 0.082713
CGPCOST5 = CGP Track Accept Message Handling cost = 0.0001
DESICOST = Designation Initialization cost = 0.005
DESUCOST = Designation Update cost = 0.0035
HOCOSTI = Handover Track Status Message processing cost = 0.0005
HOCOST2 = Low Handover processing cost = 0.0005
MPCOST1 = Measurement Processing cost for objects = 0.0004
MPCOST2 = Measurement Processing cost for stars = 0.0008
NAVCOST = Navigation Update cost = 0.05
OSOCOST2 = Object Sorting end of scan processing cost = 0.00002
OSOCOST3 = Object Sorting data movement cost = 0.0001
PRICOSTI = Prediction Initialization cost for Exo objects = 0.02
PRICOST2 = Prediction Initialization cost for Endo objects = 0.02
PRICOST3 = Prediction Initialization cost for Impact Point Prediction = 0.12
PRUCOSTI = Prediction Update cost for Exo objects = 0.017
PRUCOST2 = Prediction Update cost for Endo objects = 0.024
PRUCOST3 = Prediction Update cost for Impact Point Prediction = 0.12
PWFCOST = Predicted Window File Sort cost = 0.00005
RDICOST = Radiometric Discriminant Initialization cost = 0.02
RDUCOST1 = Radiometric Update cost for Endo objects = 0.007

Rni

RDUCOST2 = Radiometric Update cost for Exo objects = 0.007
RSMCOST = Reference Star Matching cost = 0.2

TDMCOSTI = TDM cost for initial initiator loading = 0.0001
TDMCOST2 = TDM cost for remaining initiator loading = 0.0001

TDMCOST3 = TDM cost for track accept handling = 0.0002
TDMCOST4 = TDM cost for track reject handling = 0.0002

TDMCOST5 = TDM cost for building candidate track messages = 0.0001
TFCOST = Track Fitting cost - 0.035

TICOST = Track Initialization cost = 0.096

TUCOSTI = Track Update cost for Endo objects = 0.0058
TUCOST2 = Track Update cost for Exo objects = 0.0058

The following timing estimates were derived by estimating the number of
instructions from algorithms in the AOA MDP Algorithm Design document. These

instructions were converted to times in seconds by multiplying each type of instruction by
the AOSP clock speed and the number of clock cycles required to execute that instruction.

The number of clock cycles were based on the Honeywell Generic VHSIC Spaceborne
Computer, RH-1750.

OSCCOST = Object Screening Cost = 0.0000079N 2 + 0.000001942N +

0.00000033
OSOCOSTI = Object Sorting cost for sorting objects into bins =

0.00000018N 2 + 0.000004N

Derived Expressions: These are provided in this documentation to simplify the

interpretation of the transfer functions.

C2 = number of initiators that pass through CGPII

= Nx(1-POC)x[(-PFCI)xPFTF+PFCI]

= N x 0.3 x [0.7 x0.2 +0.3]

= 0.132N

C3 = number of initiators that pass through CGPIII
= Ax(PFCII+(I -PFCII)xPFTF]

= 0.132N x [0.2 + 0.8 x 0.2]

lB-5

= 0.04752N

C" = number of candidate tracks

= Nx (1 - POC) x (1 - PFCI) +A x (1 - PFCII) + Cx(1-

PFCiU)
= N x 0.3 x 0.7 + 0.132N x 0.8 + 0.04752N x 1
= 0.36312N

Fr = number of failed tracks

= CT x [PFTF + (1 - PFrF) x PFTI]
= 0.36312N x [0.2 + 0.8 x 0.3]
= 0.1597728N

MEM* = previsous amount of data on the specific nodal memory *

(*=1,2,3,4, or 5). This parameter's value may change

from segment to segment.

IR = number of remaining initiatols
= Nx (1-POC)-TNxCII+A+C
=N x 0.3 - 2 x 3 + 0.132N + 0.04752N

= 0.3N - 6 - 0.132N + 0.04752N
= 0.21552N - 6

TACT = total accepted tracks

= CT-FT

= 0.36312N - 0.1597728N
= 0.203347N

TFAC = number of tracks accepted in Track Fitting

=(I - PFTF) x CT

= 0.8 x 0.36312N

= 0.290496N

B-6

SEGMENT DESCRIPTIONS AND TRANSFER EQUATIONS

The segment descriptions on the following pages are listed in order of the

segment numbers. The Runtime equations are given in seconds; and the Memory Usage,
Memory Access, and Bus Access equations are given in words. There are two bytes per

word.

B-7

Segment: Object Sorting Lag (1)

Processor: P1

Function: Sort objects into azimuth and elevation bins and output to Object Screening.
Sorting Lag represents the sorting of the first bin.

Runtime:
RUNTIME = PBINI x (OSOCOST1 + OSOCOST2 + OSOCOST3 x N)

= 0.05 x [(0.00000018N 2 + 0.000004N) + 0.00002 + 0.0001N]

= 0.0000009N 2 + 0.0000052N + 0.000001 (seconds)

Memory Access: Decrementing MPNMEM

MIA PBIN1 x N x MPNMEM

0.05 x Nx 23 + 6144

= 1.15N (words)

Memory Usage:

(none)

Bus Access:
(OSR to OSC)

B 3 = PBIN1 x N x OSR + BINTR
= 0.05xNx23+1
= 1.15N + 1 (words)

Segment: Object Sorting (2)

Processor. P!

Function: Sort objects into azimuth and elevation bins and output to Object Screening.
Object Sorting represents the processing of all bins after the first.

Runtime:

RUNTIME = (1 - PBINI) x (OSOCOSTI + OSOCOST2 + OSOCOST3 x N)
f 0.95 x [(0.00000018N 2 + 0.000004N) + 0.00002 + 0.OOON]

0.00000018N 2 + 0.000099N + 0.000019

Memory Access: Decrementing MPNMEM & Loading Instruction Set

MI A = (l-PBIN1)xNxMPNMEM+OSOIS

= 0.95 x Nx 23 + 6144

= 21.85N + 6144

Memory Usage:

(none)

Bus Access:

(OSR to OSC)

B 3 = (1 - PBIN1) x N x OSR + BINS x BINPTR

= 0.95xNx23+BINSx I
= 21.85N + BINS

= 21.85N + 88

B-Q

Segment: Object Screening Lag (3)

Processor: P2

Function: For the first bin of all objects, correlate object sightings with established tracks

and send correlated objects to Track Update.

Runtime:

RUNTIME = PBIN1 x OSCOST
= 0.05 x (0.0000079N 2 + 0.000001942N + 0.00000033)

- 0.0000004N 2 + 0.0000009N + 0.00000017

Memory Access: Decrementing PWF

M2 A = PTACT x PBIN1 x PWF
= 0.203347N x 0.05 x 18
- 0.1830123N

Memory Usage:

(Decrement PWF)
M2 = -(PWF x PTACT x PBINI) + MEM2

- - (18 x 0.203347N x 0.05) + 0.203347N + 134090

- 0.0203347N + 134090

Bus Access:

(MSM to PR; TUM, TDRM to TU)

Bl, B2 = (1/TN)x[PBIN1xNx(TUMxPOC+POMSxMSM+PDTx

TDRM)]

= 0.5x[0.05xNx(19x0.7+0.03x3+0.03x1)]
= 0.3355N

B-10

Segment: Object Screening (4)

Processor: P2

Function: For all bins after the first, correlate object sightings with established tracks and

send correlated objects to Track Update.

Runtime:

RUNTIME = (1 - PBINI) x OSCOST

= 0.95 x (0.0000079N 2 + 0.000001942N + 0.00000033)
= 0.0000075N 2 + 0.0000019N + 0.00000033

Memory Access: Decrementing PWF & Loading Instruction Set

M2 A = PTACTx(1-PBINI)xPWF+OSCIS

0.203347N x 0.95 x 18 + 15872

3.4772346N + 15872

Memory Usage:

(Decrement PWF)
M2 = - (PWFxPTACTx(1-PBIN1))+MEM2

- - (18 x 0.203347N x 0.95) + 0.0203347N + 134090

= -3.456899N + 134090

Bus Access:

(MSM to PR; TUM, TDRM to T)

B1, B2 = (I/TN)x[(I-PBINI)xNx(TUMxPOC+POMSxMSM+PDT

x TDRM)]

= 0.5x[0.95xNx(19x0.7+0.03x3+0.03x1)]
= 6.3745N

L)-i A

Segment: Angular Rate Smoothing (5)

Processor: P3

Function: Adjust uncorrelated object rates by averaging all of the uncorrelated object rates,

for all bins except the first.

Runtime:

RUNTIME = (1 -PBIN1)xNxARSCOSTx(1 -POC)- ACCESSES xAOAPC
= 0.95 x N x 0.0004 x 0.3 - 0.855N x 0.0000055

- 0.0001093N
where ACCESSES = number of memory accesses

= (I-PBINI) x N x (I-POC) x 3 = 0.85N

Memory Access: Incrementing OSDF & OIF & Loading Instruction Set

(Incrementing OIF)

M2_A = (1-PBIN1)xNx(-POC)xOFxFRAMES+ARSIS

= 0.95xNxO.3x16x8+13056

= 36.48N + 13056
(Incrementing OSDF)

M4 A,MSA = (1-PBINI) x N x (I-POC) x OSDF x FRAMES

= 0.95xNxO.3x16x8

= 36.48N

Memory Usage:

(Increment OSDF)

M4, M5 = N x OSDF x (1 - POC) x FRAMES

= Nx 16xO.3x8

= 38.4N

(Increment 019

M2 = N x OIF x (1 -POC) x FRAMES

= Nx 16x0.3x8

= 38.4N

Bus Access:

(OSR to CGP)

B-12

BI, B2 = (1-PBINI)xNxOSRx(1-POC)

= .95xNx23x0.3

= 6.SS5N

Segment: Track Data Manager Initial Initiator Loading (6)

Processor:. P3

Function: Load each track (Candidate Generation Process) node with three track initiators.

Rntime:

RUNTIME = TDMCOST1 x TN x TU - ACCESSES x AOAPC

- 0.0001 x 2 x 3 - 0 x 0.0000055

- 0.0006

where ACCESSES = number of memory accesses

-0

Memory Access: Loading Instruction Set

(none)

Memory Usage:

M2 = MEM2

= 1.92N

Bus Access:

(INA to CGP)

BI, B2 = TIIxINA

- 3xl

-3

B-14

Segment: Track Data Manager Build Candidate Track Messages (7)

Processor: P3

Function: Receive partial candidate track messages from the Candidate Track Generation

Process and build Candidate Track Messages. Route candidate tracks to a track
node.

Runtime:

RUNTIME = TDMCOST5 x CT - ACCESSES x AOAPC
= 0.0001 x 0.36312N - 0.36312N x 0.0000055
= 0.0000343N

where ACCESSES = number of memory accesses

= CT = 0.36312N

Memory Access: Reading OIF

M2_A = CT x OIF x FRAMES

= 0.36312N x 16x 8
= 46.47936N

Memory Usage:

M2 = MEM2

= 38.603347N + 134090

Bus Access:

(CTM to TF)
BI, B2 = (l/TN)xCTMxCT

= 0.5 x 92 x 0.36312N

= 16.70352N

!-!

Segment: Track Data Manager Remaining Initiator Loading (8)

Processor: P3

Function: Load the track (Candidate Generation Process) node with remaining track

initiators.

Runtime:

RUNTIME = TDMCOST2 x IR - ACCESSES x AOAPC

= 0.0001 x(0.21552N-6)-Ox.0000055
- 0.0000216N - 0.0006

where ACCESSES = number of memory accesses

-0

Memory Access:

(none)

Memory Usage:

M2 =MEM2

= 38.603347N + 134090

Bus Access:
(INA to CGP)
BI, B2 = (1/TN)xINAxIR

= 0.5xlx(0.21552N-6)

= 0.10776N - 3

8-1I

Segment: Track Data Manager Track Accept/Reject Message Handier (9)

Processor: P3

Function: Process the track accept or reject messages from track initialization. If accepted,
then a track accept message must be routed to the Candidate Generation Process.
If rejected, send initiator back to the Candidate Generation Process.

Runtime:

RUNTIME = TDMCOST3 x TFAC + TDMCOST4 x FT - ACCESSES x AOAPC
= 0.0002 x 0.290496N + 0.0002 x 0.1597728N - 0.3631198N x

0.0000055

= 0.0000881N
where ACCESSES = number of memory accesses

SFT + TACT = 0.3631198N

Memory Access: Incrementing FTLF & Decrementing OIF & Loading Instruction Set
M2_A = FT x FTLF + TACT x OIF x FRAMES + TDMIS

= 0.1597728Nx 5 + 0.203347N x 16x 8 + 15872
= 26.82728N + 15872

Memory Usage:

(Increment FTLF & Decrement OIF)

M2 - FTLF x FT - OIF x FRAMES x TACT + MEM2

= 5 x 0.1597728N - 16 x 8 x 0.203347N + 38.603347N + 134090
= 13.373795N + 134090

Bus Access:
(TAM to CGP)

B1, B2 = TFACxTAM

= 0.290496N x 9
= 2.614464N

B-17

Segment: Predicted Window File Sort (10)

Processor: P3

Function: The track's Predicted Window File must be sorted into azimuth and elevation

bins prior to use in Object Screening.

Runtime:

RUNTIME = PWFCOST x TACT- ACCESSES x AOAPC

= 0.00005 x 0.203347N - 0.203347N x 0.0000055

= 0.000009N

where ACCESSES = number of memory accesses

= TACT = 0.203347N

Memory Access: Incrementing PWF & Loading Instruction Set

M2 A = TACTxPWF+PWFIS

= 0.203347N x 18 + 3584

= 3.660246N + 3584

Memory Usage:

(Increment PWF)

M2 = PWFxTACT+MEM2

= 18 x 0.203347N + 13.373795N + 134090

= 17.034041N + 134090

Bus Access:

(none)

B-18

Segment: Candidate Generation Process Lag (11)

Processor. P4

Function: Generate candidate tracks for all initiators initially loaded on all track nodes.

Runtime:
RUNTIME = CUI x CGPICOST - ACCESSES x AQAPO

= 3 x 0.082713 - 3 x 0.0000055
= 0.248122S

where ACCESSES = number of memory accesses
= CU=3

Memory Access: Reading OSDF
M4A = CII x QSDF x FRAMES

= 3xl6x8

= 384

Memory Usage:
(none)

Bus Access:
(INR, PCTh4 to TDM)
Bi 1 CIIxIN+CIIx(I-PFCI)xPCTM

=3x5+3x0.7x46

=111.6

B-!9

Segment: Candidate Generation Process (12)

Processor: P4

Function: Generate candidate tacks for all initiators remaining after the initially loaded

initiators are processed.

Runtime:
RUNTIME - CGPICOSTx[([I/TN)xN(-POC)-CI]+CGP2COSTxC2+

CGP3COST x C3 - ACCESSES x AOAPC
= 0.082713 x (0.5 x N x 0.3 - 3] + 0.082713 x 0.132N + 0.082713 x

0.04752N - (0.47952N - 3) x 0.0000055
0.027253N . 0.2481225
where ACCESSES = number of memory accesses

= N x (I-POC) - CII + C2 + C3 = 0.47952N - 3

Memory Access: Reading OSDF & Loading Instruction Set
M4A - (Nx(I -POC)-CII+C2+C3)xOSDFxFRAMES+CGPIS

(N x 0.3 - 3 + 0.132N + 0.04752N) x 16 x 8 + 21248
= 61.37856N + 20864

Memory Usage:

(none)

Bus Access:

(INR, PCTM to TDM)

BI = (I/TN)x[INRxIR+PCTMx[[Nx(1-POC)-CIIxTN]x(1 -
PFCI) + C2 x (1 - PFCII) + C3 x (1 - PFCI)] j

= 0.5x[5x(0.21552N-6)+46x[[NxO.3-3x2]x0.7+0.132N

x 0.8 + 0.04752N x I]]
= 8.89056N - 111.6

B-20)

Segment: Candidate Generation Process Track Accept Message Handier (13)

Processor: P4

Function: Remove all of the object sighting records in the track from the uncorrelated
database so that they are not used in other tracks.

Runtime:

RUNTIME = CGPCOST5 x TACT - ACCESSES x AOAPC

= 0.0001 x 0.203347N - 0.203347N x 0.0000055

= 0.0000192N
where ACCESSES = number of memory accesses

= TACT = 0.203347N

Memory Access: Decrementing OSDF
M4 A = TACTxOSDFxFRAMES

= 0.203347N x 16 x 8
= 26.028416N

Memory Usage:

(none)

Bus Access:
(none)

B-2!

Segment: Track Fitting (14)

Processor. P5

Function: Determine which candidate tracks are valid ballistic trajectories.

Runtime:

RUNTIME = /TN x Cr x TFCOST - ACCESSES x AOAPC

= 0.5 x 0.36312N x 0.035 - 0 x 0.0000055

0 .0063546N
where ACCESSES number of memory accesses

-0

Memory Access: Loading Instruction Set

M4A = TFIS

= 22272

Memory Usage:

(none)

Bus Access:

(TARM to TDM)

B1 = 1/TN x Cr x TARM

= 0.5 x 0.36312N x 9
= 1.63404N

B-22

Segment: Track Initialization (All) (15)

Processor: P5

Function: Establish track files for those tracks passing the validation test.

Runtime:

RUNTIME = TICOST x TFAC x 1IN - ACCESSES x AOAPC
= 0.096 x 0.290496N x 0.5 - 0 x 0.0000055

= 0.0139438N
where ACCESSES = number of memory accesses

-0

Memory Access: Loading Instruction Set

M4_A = TIS

28928

Memory Usage:

(none)

Bus Access:
(HTSM to HO)

B$ = HTSMxTFACx l/TN
= 19 x 0.290496N x 0.5

= 2.759712N

(TARM to TDM)
BI = TARM x TFAC x 1/TN

- 9 x 0.290496N x 0.5

f 1.307232N

B-23

Segment: Radiometric Initialization (16)

Processor: P5

Function: Compute the initial values for the radiometric features of the new track.

Runtime:
RUNTIME = RDICOST x TACT x 1/TN - ACCESSES x AOAPC

= 0.02 x 0.2033472N x 0.5 - 0.1016735N x 0.0000055
= 0.0020329N

where ACCESSES = number of memory accesses

= 1/TN x TACT = 0.1016735N

Memory Access: Incrementing OTF & Loading Instruction Set

M4A = 1/TN x TACT x OTF + RDIIS
- 0.5 x 0.2033472N x 236 + 21760
= 23.994946N + 21760

Memory Usage:

(Increment OTF)

M4 = OTFxTACTx I/TN+MEM4

= 236 x 0.203347N x 0.5 + 38.3895N + 483000
= 62.384446N + 483000

Bus Access:

(none)

B-24

Segment: Designation Initialization (17)

Processor:. PI

Function: Use radiometric and metric data to designate objects. All objects are designated

as either lethal or non-lethal.

Runtime:

RUNTIME = DESICOST x TACT x 1/TN - ACCESSES x AOAPC

= 0.005 x 0.203347N x 0.5 - 0.203347N x 0.0000055
= 0.0005072N

where ACCESSES = number of memory accesses

- 2 x TACT x 1/TN = 0.203347N

Memory Access: Reading & Writing OTF & Loading Instruction Set

M4 A = 2xTACTx 1/TNxOTF+DESIS

= 2 x 0.203347N x 0.5 x 236 + 3840

= 47.98824N + 3840

Memory Usage:

M4 = MEM4

= 62.384446N + 483000

Bus Access:

(none)

B-25

Segment: Prediction Initialization (18)

Processor. P5

Function: Compute target position handover estimates, target prediction handover

estimates, and impact point prediction handover estimates.

Runtime:

RUNTIME = (1/TN) x [PRICOSTI x TACT x EXOT + PRJCOST2 x ENDOT x
TACr + PRICOST3 x PLT x TACT x ENDOT]-ACCESSES x

AOAPC
= 0.5 x [0.02 x 0.203347N x 0.9 + 0.02 x 0.1 x 0.203347N + 0.12 x

0.2 x 0.203347N x 0.1] - 0.0101674N x 0.0000055

- 0.0022775N
where ACCESSES = number of memory accesses

= ENDOT x TACT x 1I/TN =0.0101674N

Memory Access: Reading OTF & Loading Instruction Set

M4_A = ENDOT x TACT x 1/TN x OTF + PRIS

= 0.1 x 0.203347N x 0.5 x 236 + 45312

= 2.3995064N + 45312

Memory Usage:

M4 = MEM4
= 62.384446N + 483000

Bus Access:

(HTSM, PRH to HO)

B 5 = HTSM x 1/TN x TACT + PR x PLT x ENDOT x TACT x 1TN

= 19 x 0.5 x 0.203347N + 104 x 0.2 x 0.1 x 0.203347N x 0.5
= 2.1432795N

(PWF to OSC)

B = PWFxTACrxl/TN

= 104 x 0.203347N x 0.5

= 10.574054N

B-26

Segment: Track Update (19)

Processor: P8

Function: Update the Object Track File for all existing tracks for which a new sighting is

correlated.

Runtime:

RUNTIME = (1fTN)x[TUCOST1xNxPOCxENDOC+TUCOST2xNxPOC

x EXOC] - ACCESSES x AOAPC

= 0.5 x [0.0058 x N x 0.7 x 0.1 + 0.0058 x N x 0.7 x 0.9 -0.7105 x

0.0000055
= .0020261N

where ACCESSES = number of memory accesses

= PDTxPOCxNxI/TN+2xNxPOCx I/TN

= 0.7105N

Memory Access: Decrementing, Reading, & Writing OTF & Loading Instruction Set

M4_A = (PDTxPOCxNxX/TN+2xNxPOCxl/TN)xOTF+TUIS
= (0.03x0.7xNxO.5+2xNxO.7x0.5)x236+21760

= 167.678N + 21760

Memory Usage:

(Decrement OTF)

M4 = -(PDTxPOCxNx 1TN)+MEM4
= -(0.03x0.7xNxO.5)+483000

= .0.0105N + 483000

Bus Access:

(HTSM to HO)

B5 = HTSMxNxPOCx I/TN

= 19xNxO.7x0.5

= 6.65N

B-27

Segment: Radiometric Update (20)

Processor: P8

Function: Update the radiometric features of the new tracks.

Runtime:
RUNTIME = (r/N)x[RDUCOST1xNxPOCxENDOC +RDUCOST2xNx

POC x EXOC] - ACCESSES x AOAPC

= 0.5 x [0.007 x N x 0.7 x 0.1 + 0.007 x N x 0.7 x 0.9]-0.7N x

0.0000055
= 0.0024462N

where ACCESSES = number of memory accesses

= 2xNxPOCx I/TN=0.7N

Memory Access: Reading & Writing OTF & Loading Instruction Set
M4_A = 2xNxPOCxlI/TNxOTF+RDUIS

= 2xNxO.7x0.5x236+17664

= 165.2N + 17664

Memory Usage:

M4 = MEM4
= 38.3895N + 483000

Bus Access:
(none)

B-2R

Segment: Designation Update (21)

Processor: P8

Function: Use radiometric and metric data to designate objects. All objects are designated

as either lethal or non-lethal.

Runtime:

RUNTIME = 1/TN x DESUCOST x N x POC - ACCESSES x AOAPC
= 0.5 x 0.0035 x N x 0.7 - 0.7N x 0.0000055

= 0.0012212N

where ACCESSES = number of memory accesses

= 1TN x TN x POC x 2 =0.7N

Memory Access: Reading & Writing OTF & Loading Instruction Set
M4 A = 1/TNxNxPOCx2xOTF+DESIS

= 0.5xNxO.7x2x236+3840

= 165.2N + 3840

Memory Usage:

M4 = MEM4

= 38.3895N + 483000

Bus Access:

(none)

R-2Q

Segment: Prediction Update (22)

Processor. P8

Function: Compute target position handover estimates, target prediction handover

estimates, and impact point prediction handover estimates.

Runtime:

RUNTIME = (IjTN) x [PRUCOSTI x EXOC x N x POC + [PRUCOST2 x

ENDOC x N x POC + PRUCOST3 x PLC x N x POC x ENDOC -

ACCESSES x AOAPC
= 0.5 x (0.017 x 0.9 x N x 0.7 + 0.24 x 0.1 x N x 0.7 + 0.12 x 0.2 x N

x 0.7 x 0.1) - 0.315N x 0.0000055

= 0.0145933N

where ACCESSES = number of memory accesses

= /JN x ENDOC x N x POC =0.315N

Memory Access: Reading 0T" & Loading Instruction Set

M4A = ITN x ENDOC x N x POC x OTF + PRIS

- 0.5 x 0.9 x N x 0.7 x 236 + 45312

= 74.34N + 45312

Memory Usage:

M4 =MEM4

- 38.3895N + 483000

Bus Access:

(HTSM, PRH to HO)

B5 = HTSMx I/TNxNxPOC+PRHxPLCxENDOCxNxPOCx I/TN
= 19 x 0.5 x N x 0.7 + 104 x 0.2 x 0.1 x N x 0.7 x 0.5

= 7.378N

(PWF to OSC)

BI = PWF x N x POC x I/TN
= 104xNx0.7 x0.5
= 36.4N

B-In

Segment: Candidate Generation Process Lag (23)

Processor. P6

Function: Generate candidate tracks for all initiators initially loaded on all track nodes.

Runtime:

RUNTIME = CII x CGPICOST - ACCESSES x AOAPC
= 3 x 0.082713 - 3 x 0.0000055

= 0.2481225
where ACCESSES = number of memory accesses

= CII = 3

Memory Access: Reading OSDF

MSA = CIIxOSDFxFRAMES

= 3x16x8

= 384

Memory Usage:

(none)

Bus Access:

(INR, PCTM to TDM)
B2 = CIxINR+CIIx(1-PFCI)xPCTM

= 3x5+3x0.7x46

= 111.6

I-3

Segment: Candidate Generation Process (24)

Processor. P6

Function: Generate candidate tracks for all initiators remaining after the initially loaded

initiators are processed.

Runtime:

RUNTIME = CGP1COSTx[(1TfN)xN(1-POC)-CII]+CGP2COSTxC2+
CGP3COST x C3 - ACCESSES x AOAPC

= 0.082713 x 0.5 x N x 0.3 - 3] + 0.082713 x 0.132N + 0.082713 x

0.04752N - (0.47952N - 3) x 0.0000055

= 0.027253N - 0.2481225
where ACCESSES = number of memory accesses

= N x (1-POC) - CH + C2 + C3 = 0.47952N - 3

Memory Access: Reading OSDF & Loading Instruction Set

M5A = (Nx(1-POC)-CII+C2+C3)xOSDFxFRAMES+CGPIS

(N x 0.3 - 3 + 0.132N + 0.04752N) x 16 x 8 + 21248

= 61.37856N + 20864

Memory Usage:

(none)

Bus Access:
(INR, PCTM to TDM)

B2 = (1ITN)x[INRxIR+PCTMx[[Nx(1-POC)-CIIxTN]x(l-!

PFCI) + C2 x (1 - PFCII) + C3 x (1 - PFCIII)]]

= 0.5x[5x(O.21552N-6)+46x[[NxO.3-3x2]xO.7+0.132N

x 0.8 + 0.04752N x I Ji
= 8.89056N - 111.6

I
13-32

. . . iNKk

Segment: Candidate Generation Process Track Accept Message Handier (25)

Processor P6

Function: Remove all of the object sighting records in the track from the uncorrelated

database so that they are not used in other tracks.

Runtime:

RUNTIME = CGPCOST5 x TACT- ACCESSES x AOAPC

= 0.0001 x 0.203347N - 0.203347N x 0.0000055
= 0.0000192N

where ACCESSES = number of memory accesses

= TACT - 0.203347N

Memory Access: Decrementing OSDF

M5 A = TACT x OSDF x FRAMES

= 0.203347N x 16 x 8
= 26.028416N

Memory Usage:

(none)

Bus Access:

(none)

B-33

Segment: Track Fitting (26)

Processor: P7

Function: Determine which candidate tracks are valid ballistic trajectories.

Runtime:
RUNTIME = VI'N x CT x TFCOST - ACCESSES x AOAPC

0.5 x 0.36312N x 0.035 - 0 x 0.0000055

= 0.0063546N
where ACCESSES= number of memory accesses

=0

Memory Access: Loading Instruction Set
M5 A = TFIS

= 22272

Memory Usage:

(none)

Bus Access:

(TARM to TDM)
B2 = liTN x CT x TARM

= 0.5 x 0.36312N1x39

= 1.63404N

B-34

Segment: Track Initialization (27)

Processor. P7

Function: Establish track files for those tracks passing the validation test, except for the

first few tracks processed by TI Lag.

Runtime:

RUNTIME = TICOST x [TFAC x lfN - T1I2] - ACCESSES x AOAPC
= 0.096 x (0.290496N x 0.5 - 3)-0 x 0.0000055

= 0.0139438N - 0.288

where ACCESSES number of memory accesses

-0

Memory Access: Loading Instruction Set

MS A = TIIS
= 28928

Memory Usage:
(none)

Bus Access:

(HTSM to HO)

B6 = HTSMx(TFACx 1/TN-T112)

= 19 x (0.290496N x 0.5 -3)

= 2.759712N - 57
(TARM to TDM)
B2 = TARM x (TFAC x 1/TN- T12)

9 x (0.290496N x 0.5 -3)

- 1.307232N - 27

B-I

Segment: Radiometric Initialization (28)

Processor: P7

Function: Compute the initial values for the radiometric features of the new track.

Runtime:
RUNTIME = RDICOST x TACT x 1IN - ACCESSES x AOAPC

= 0.02 x 0.2033472N x 0.5 - 0.1016735N x 0.0000055
= 0.0020329N

where ACCESSES = number of memory accesses

= /TN x TACT= 0.1016735N

Memory Access: Incrementing OTF & Loading Instruction Set
M5A = INxTACT xOTF+RDIIS

= 0.5 x 0.2033472N x 236 + 21760
= 23.994946N + 21760

Memory Usage:

(Increment OTF)

M5 = OTFxTACTx WITN+MEM5

- 236 x 0.203347N x 0.5 + 38.3895N + 483000

- 62.384446N + 483000

Bus Access:

(none)

POO;

Segment Designation Initialization (29)

Processor: P7

Function: Use radiometric and metric data to designate objects. All objects are designated

as either lethal or non-lethal.

Runtime:

RUNTIME = DESICOST x TACT x 1lTN - ACCESSES x AOAPC

0.005 x 0.203347N x 0.5 - 0.203347N x 0.0000055

= 0.0005072N
where ACCESSES = number of memory accesses

= 2 x TACT x 1/TN = 0.203347N

Memory Access: Reading & Writing OTF & Loading Instruction Set

M5 A = 2xTACTx 1ITNxOTF+DESIS

= 2 x 0.203347N x 0.5 x 236 + 3840

f 47.98824N + 3840

Memory Usage:

M = MEM5

= 62.384446N + 483G30

Bus Access:

(none)

B-37

Segment: Prediction Initialization (30)

Processor. P7

Function: Compute target position handover estimates, target prediction handover
estimates, and impact point prediction handover estimates.

Runtime:

RUNTIME = (/N) x [PRICOSTI x TACT x EXOT + PRICOST2 x ENDOT x
TACT + PRICOST3 x PLT x TACT x ENDOT] - ACCESSES x

AOAPC

= 0.5 x [0.02 x 0.203347N x 0.9 + 0.02 x 0.1 x 0.203347N + 0.12 x

0.2 x 0.203347N x 0. 1 - 0.0101674N x 0.0000055
= 0.0022775N

where ACCESSES = number of memory accesses

= ENDOT x TACT x I/TN = 0.0101674N

Memory Access: Reading OTF & Loading Instruction Set

M5 A = ENDOT x TACT x 1/TN x OTF + PRIS

= 0.1 x 0.203347N x 0.5 x 236 + 45312

= 2.3995064N + 45312

Memory Usage:

M5 = MEM5

= 62.384446N + 483000

Bus Access:

(HTSM, PRH to HO)

B 6 = HTSM x 1/TN x TACT + PRH x PLT x ENDOT x TACT x 1/TN

= 19 x 0.5 x 0.203347N + 104 x 0.2 x 0.1 x 0.203347N x 0.5
= 2.1432795N

(PWF to OSC)

B2 = PWFxTACTxx ITN

= 104 x 0.203347N x 0.5
- 10.574054N

B-3I

Segment Track Update (31)

Processor. P9

Function: Update the Object Track File for all existing tracks for which a new sighting is
correlated.

Runtime:

RUNTIME = (1/TN)x[TUCOST1xNxPOCxENDOC+TUCOST2xNxPOC

x EXOC] - ACCESSES x AOAPC
= 0.5x [0.0058 xN x0.7 x0.+0.0058x N x0.7 x0.9] 0.7105x

0.0000055
= 0.0020261N

where ACCESSES = number of memory accesses

= PDTxPOCxNx /TN+2xNxPOCx lTN
= 0.7105N

Memory Access: Decrementing, Reading, & Writing OTF & Loading Instruction Set

M5 A = (PDTxPOCxNxl/TN+2xNxPOCxl/TN)xOTF+TUIS

= (0.03x0.7xNxO.5+2xNxO.7x0.5)x236+21760

= 167.678N + 21760

Memory Usage:

(Decrement OTF)

M5 = - (PDT x POC x N x 1I/TN) + MEM5

= -(0.03x0.7xNxO.5)+483000

= -0.0105N + 483000

Bus Access:

(HTSM to HO)

B6 = HTSMxNxPOCx 1frN
= 19xNxO.7x0.5

= 6.6SN

!P

Segment: Radiometric Update (32)

Processor: P9

Function: Update the radiometric features of the new tracks.

Runtime:
RUNTIME = (ITN)x[RDUCOST1xNxPOCxENDOC +RDUCOST2xNx

POC x EXOC] - ACCESSES x AOAPC
= 0.5 x [0.007 x N x 0.7 x 0.1 + 0.007 x N x 0.7 x 0.9]-0.7N x

0.0000055
= 0.0024462N

where ACCESSES = number of memory accesses

= 2 x N x POC x 1/TN =0.7N

Memory Access: Reading & Writing OTF & Loading Instruction Set
M5A = 2xNxPOCxlfTNxOTF+RDUIS

= 2xNxO.7x0.5x236+17664

= 165.2N + 17664

Memory Usage:

M5 = MEM5

- 38.3895N + 483000

Bus Access:

(none)

I

Segment: Designation Update (33)

Processor: P9

Function: Use radiometic and metric data to designate objects. All objects are designated

as either lethal or non-lethal.

Runtime:

RUNTIME -- lfN x DESUCOST x N x POC - ACCESSES x AOAPC

= 0.5 x 0.0035 x N x 0.7 - 0.7N x 0.0000055

= 0.0012212N
where ACCESSES = number of memory accesses

= I/TN x N x POC x 2 =0.7N

Memory Access: Reading & Writing OTF & Loading Instruction Set

MS A = 1/TNxNxPOCx2xOTF+DESIS
= 0.5xNxO.7x2x236+3840

= 165.2N + 3840

Memory Usage:

M5 - MEM5

= 38.3895N + 483000

Bus Access:

(none)

B41

Segment: Prediction Update (34)

Processor. P9

Function: Compute target position handover estimates, target prediction handover

estimates, and impact point prediction handover estimates.

Runtime:

RUNTIME = (1/TN)x[PRUCOST1xEXOCxNxPOC+[PRUCOST2x

ENDOC x N x POC + PRUCOST3 x PLC x N x POC x ENDOC -
ACCESSES x AOAPC

- 0.5 x (0.017 x 0.9 x N x 0.7 + 0.24 x 0.1 x N x 0.7 + 0.12 x 0.2 x N

x 0.7 x 0.1) - 0.315N x 0.0000055
- 0.0145933N

where ACCESSES = number of memory accesses

= 1TN x ENDOC x N x POC =0.315N

Memory Access: Reading OTF & Loading Instruction Set

MSA = 1/TNx ENDOC x N x POC x OTF + PRIS
0 0.5 x 0.9 x N x 0.7 x 236 + 45312

- 74.34N + 45312

Memory Usage:

MS -MEM5

= 38.3895N + 483000

Bus Access:
(HTSM, PRH to HO)

B6 = HTSMx 1/TNxNxPOC+PRHxPLCxENDOCxNxPOCx 1/TN
- 19x0.5xNxO.7+ 104x0.2x 0. xNxO.7x0.5

= 7.378N

(PWF to OSC)

B2 = PWFxNxPOCx I/TN
- 104xNx0.7 x0.5
= 36.4N

I

Segment: Angular Rate Smoothing Lag (35)

Processor: P3

Function: Adjust uncorrelated object rates by averaging aU of the uncorrelated object rates,

for the first bin only.

Runtime:
RUNTIME = PBINI x N x ARSCOST x (1 - POC) - ACCESSES x AOAPC

= 0.05 x N x 0.0004 x 0.3 - 0.045N x 0.0000055
= 0.0000058N

where ACCESSES = number of memory accesses

= PBINI x N x (-POC) x 3 =0.045N

Memory Access: Incrementing OSDF & OIF

(Incrementing OIF)

M2_A = PBINI x N x (I - POC) x OIF x FRAMES
= 0.05xNxO.3x16x8

= 1.92N

(Incrementing OSDF)

M4_A,M5 A = PBIN1 x N x (1-POC) x OSDF x FRAMES

= 0.05xNx.3x16x8

= 1.92N

Memory Usage:

(Increment OSDF)

M4, MS = PBINI x N x OSDF x (1 - POC) x FRAMES

= 0.05xNx 16xO.3x8

-1.92N

(Increment OIF)

M2 = PBIN1 x N x OIF x (1 -POC) x FRAMES

= 0.05x Nx 16x 0.3x 8
- 1.92N

Bus Access:

(OSR to CGP)

B-4?

BI, B2 = PBINxNxOSRx(I-POC)

= .5xNx23xO.3

= 0.345N

B-44

Segment Measurement Processing Lag (36)

Processor. PIO

Function: Input Object Sighting Messages, correct the received object angular position,
angular rate and object irradiance measurements, and screen the data to identify

stars.

Runtime:
RUNTIME = PBINI x N x MPCOST1 + [PSL x STARS + PBIN1 x N x PFS] x

MPCOST2 - ACCESSES x AOAPC
= 0.05 x N x 0.0004 + [0.05 x 30 + 0.05 x N x 0.02] x 0.0008 - 1.5 x

0.0000055
= 0.0000208N + 0.0011918

where ACCESSES = number of memory accesses
- PSL x STARS- 1.5

Memory Access: Decrementing MPNMEM
MIA = PSL x STARS x MPNMEM

= 0.05x30x23

= 34.5

Memory Usage:

(none)

Bus Access:

(SSOS to OSC)

B 3 = SSOS

= 13
(SSM to RSM)
B 4 = SSM x (PSL x STARS + PBINI x N x PFS)

= 18x(O.05x30+O.O5xNxO.02)

= 0.018N + 27

B45

Segment: Measurement Processing (37)

Processor: PlO

Function: Input Object Sighting Messages, correct the received object angilar position,

angular rate and object irradiance measurements, and screen the data to identify

stars.

Runtime:

RUNTIME = (I - PBINI) x N x MPCOSTI + [(I - PSL) x STARS + (1 -

PBINI) x N x PFS] x MPCOST2 - ACCESSES x AOAPC
- 0.95 x N x 0.0004 + [0.95 x 30 + 0.95 x N x 0.02 x 0.0008 - 28.5 x

0.0000055

= 0.0003952N + 0.0226433
where ACCESSES = number of memory accesses

= (l-PSL) x STARS = 28.5

Memory Access: Decrementing MPNMEM & Loading Instruction Set
Ml1A = (I - PSL) x STARS x MPNMEM + MPIS

= 0.95 x 30 x 23 + 9216

- 9871.5

Memory Usage:

(Decrement MPNMEM)

Ml = - [MPNMEM x (STARS + N)] + MEM I

= -(23x(30+N))+76432

- -23N + 77121

Bus Access:

(SSM to RSM)
B 4 = SSMx [(1 -PSL)x STARS+ (I -PBINI)xNxPFS]

= 18x(0.95x30+0.95xNx0.02)

= 0.342N + 513

B-46

Segment: Initialization Node 3 (38)

Processor: P11

Function: Initializes memory on Node 3: M3.

Runtime:

RUNTIME = 0

Memory Access:

(none)

Memory Usage:

(Increment BUFFER3 & NHF & Load all instruction sets)

M3 - N x FRAMES x NAVUP + BUFFER3 + NAVIS + HOIS + RSMIS

= 105 x 8 x 10 + 52671 + 8704 + 15104 + 14848

= 99727

Bus Access:

(none)

ft--

Segment Navigation Update (39)

Processor. P11

Function: Acquires and processes navigation data to update the Navigational History File.

Runtime:

RUNTIME = NAVCOST x NAVUP - ACCESSES x AOAPC
- 0.05 x 10 -10 x 0.0000055
- 0.499945

where ACCESSES = number of memory accesses

= NAVUP= 10

Memory Access: Writing NHF & Loading Instruction Set

M3 A = NAVUP x NHF + NAVIS

= 10 x 105 + 8704
= 9754

Memory Usage:

(none)

Bus Access:

(NHF to MP)

B4 = NHF x NAVUP

- 105 x 10
= 1050

(NHF to TU, PR)

B5, B6 = NHFxNAVUPx2

= 105x10x2

- 2100

B-48

Segment: Handover (40)

Processor P12

Function: Stores and forwards prediction messages to the CSS, stores and forwards track

status messages to the C & D, and forwards lethal handover messages to RSS.

Runtime:

RUNTIME = HOCOSTI x [TFAC + TACT + 2 x (N x POC) I + HOCOST2 x
ENDOT x PLT x TACT - ACCESSES x AOAPC

= 0.0005 x (0.290496N + 0.203347N + 2 x N x 0.7] + 0.0005 x 0.1 x

0.1 x 0.203347N - 1.8979099 x 0.0000055
= 0.0009375N

where ACCESSES = number of memory accesses

= ENDOT x PLT x TACT + TFAC + TACT+2x

N x POC = 1.8979099N

Memory Access: Reading OTF & Loading Instruction Set

M3_A = (ENDOT x PLT x TACT + TFAC + TACT + 2 x N x POC) x OTF +

HOIS

= (0.1 x 0.2 x 0.203347N + 0.290496N + 0.203347N + 2 x N x 0.7) x
236+15104

= 447.90674N + 15104

Memory Usage:

(none)

Bus Access:

(none)

B 40

=mll

Segment: Reference Star Matching (41)

Processor. P13

Function: Accepts star sightings, matches them with stars in the reference star catalog,
calculates p,,inting mr'or, e.nd transfers to SS.

Runtime:
RUNTIME = RSMCOST x (STARS + N x PFS) - ACCESSES x AOAPC

= 0.2 x (30 + N x 0.02)- 0 x 0.0000055
= 0.004N + 6

where ACCESSES = number of memory accesses
=0

Memory Access: Loading Instruction Set
M3_A = RSMIS

= 14848

Memory Usage:
M3 = MEM3

= 99727

Bus Access:
(ELCOR to TU, TF)
B5, B6 = ELCORx2

= 10x2
= 20

B -50O

Segment: Track Initialization Lag (42)

Processor: P7

Function: Establish track files for those tracks passing the validation test.

Runtime:

RUNTIME = TICOST x T112 - ACCESSES x AOAPC

= 0.096 x 3 - 0 x 0.0000055
= 0.288

where ACCESSES = number of memory accesses
=0

Memory Access: Loading Instruction Set

(none)

Memory Usage:

(none)

Bus Access:

(HTSM to HO)
B6 = HTSM x TII2

= 19x3

= 57

B2 = TARM x TII2

= 9x3

= 27

Segment: Initialization Node 1 (43)

Processor. PIO

Function: Initializes memory on node 1: MI.

Runtime:

RUNTIME - 0

Memory Access:

(none)

Memory Usage:
(Increment BUFFER1 & MPNMEM & Load all instruction sets)

M I = NHF x FRAMES x NAVUP + BUFFER3 + OSOIS + MPIS
= 105 x 8 x 10 + 52671 + 6144 + 9216

= 76431

Bus Access:
(none)

B-52

Segment: Initialization Node 2 (44)

Processor. P2

Function: Initializes memory on node 2: M2.

Runtime:

RUNTIME = 0

Memory Access:

(none)

Memory Usage:

(Increment BUFFER2 & PWF & Load all instruction sets)

M2 = PWF x TACT + BUFFER2 + OSCIS + ARSIS + TDMIS + PWFIS

= 104 x 0.203347N + 85602 + 15872 + 13056 + 15872 + 3584

= 0.203347N + 134090

Bus Access:

(none)

Segment: Initialization Node 4 (45)

Processor P8

Function: Initializes memory on node 4: M4.

Runtime:

RUNTIME -

Memory Access:

(none)

Memory Usage:

(Increment BUFFER4 & Load all instruction sets)

M4 = BUFFER4 + CGPIS + TFIS + TIIS + RDIIS + DESIS + PRIS + TUIS
+ RDUIS + DESIS + PRIS

= 251064 + 21248 + 22272 + 28928 + 21760 + 3840 + 45312 + 21760 +

17664 + 3840 + 45312
= 483000

Bus Access:

(none)

BAI

Segment: Initialization Node 5 (46)

Processor: P9

Function: Initializes memory on node 5: MS.

Runtime:

RUNTIME = 0

Memory Access:

(none)

Memory Usage:

(Increment BUFFER5 & Load all instruction sets)

MS = BUFFER5 + CGPIS + TFIS + TIS + RDIS + DESIS + PRIS + TUIS

+ RDUIS + DESIS + PRIS

= 251064 + 21248 + 22272 + 28928 + 21760 + 3840 + 45312 + 21760 +

17664 + 3840 + 45312

= 483000

Bus Access:

(none)

B-35

I

APPENDIX C

PERM TRACK MODEL DATA BASE

Load Name: AOA/JOSP Tracking
Author: TBE
Load Creation Date: 08/10/89 Validated: TRUE
Load Validation Date: 08/21/89 Load Validation Time: 09:42:49.08

Load Definition Processor Ensemble Data:

Processor Ensemble Name: AOSP Tracking

Author: TBE Creation Date: 07/05/89
Validated - TRUE
Validation Date: 08/10/89 Validation Time: 13:32:24.12

*Processor Class List-

*Processor Class Name: NAVIGATIONAL CONTROLLERS

***Accessible Processors Variables List:

Variable Name: Class Restriction:

V_LocalNIOC_1 NAVIGATIONAL CONTROLLERS
V_LocalNIOC_2 NAVIGATIONAL CONTROLLERS
V_Sorter_1 SORTERS
V_Sorter_2 SORTERS
V_Screener_1 SCREENERS
V_Screener_2 SCREENERS
V_FirstTracker_1 TRACKERS
V_FirstTracker_2 TRACKERS
V_FirstTracker_3 TRACKERS
V_SecondTracker._1 TRACKERS
V_SecondTracker_2 TRACKERS
V_SecondTracker_3 TRACKERS

***Accessible Memories Variables List:

Variable Name: Class Restriction:

V_NIOCMemory NIOC MEMORY
V_SortMemory SORT MEMORY
V_ScreenMemory SCREEN MEMORY

***Accessible Busses Variables List:

C-1

Variable Name: Class Restriction

V_Sort_I/O SORT WITH NIOC
V_Screeni/O SCREEN WITH NIOC
V_FirstTrackI/O TRACK WITH NIOC
V_SecondTrackI/O TRACK WITH NIOC

***Processor Class Instantiation List:

****Processor Name: P13

Processor Class: NAVIGATIONAL CONTROLLERS

*****Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalNIOC_1 => P11
V_LocalNIOC_2 => P12
V_Sorter_1 => P10
V_Sorter_2 => P1
V_Screener_1 => P2
V_Screener_2 => P3
V_FirstTracker._1 => P4
V_FirstTracker__2 W> P5
V_FirstTracker_3 -> P8
V_SecondTracker_1 => P6
V_SecondTracker._2 -> P7
V_SecondTracker_3 -> P9

*****Accessible Memories Variables Assignment List:

Variable Name: -> Assigned Value:

V_NIOC Memory -> M3
V_SortMemory => Ml
V_ScreenMemory -> M2

*****Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:

V Sort 1/O =>8B4
V_-ScreenI/O => B7

C-2

V_FirstTrack_/O B5
V_SecondTrackI/O -> B6

****Processor Name: P12

Processor Class: NAVIGATIONAL CONTROLLERS

*****Accessible Processors Variables Assignment List:

Variable Name: -> Assigned Value:

V_LocalNIOC_I => P11
VLocal NIOC 2 -> P13
V_Sorter_1 => P10
V_Sorter_2 -> P1
V_Screener_1 -> P2
V_Screener_2 => P3
V_FirstTracker_1 -> P4
V_FirstTracker_2 W> P5
V_FirstTracker_3 W> P8
V_SecondTracker_1 I> P6
V_SecondTracker_2 => P7
V_SecondTracker_3 => P9

****Accessible Memories Variables Assignment List:

Variable Name: => Assigned Value:

V_NIOCMemory -> M3
V_SortMemory => M1
V_ScreenMemory -> M2

*****Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:

VSort_/O => B4
V_ScreenI/O -> B7
V_FirstTrackI/O -> B5
V_SecondTrackI/O -> B6

****Processor Name: P11

Processor Class: NAVIGATIONAL CONTROLLERS

C-3

*****Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalNIOC_1 => P12
V_LocalNIOC_2 => P13
V_Sorter_1 => P10
V_Sorter_2 => P1
V_Screener_1 => P2
V_Screener_2 => P3
V_FirstTracker_1 => P4
V_FirstTracker 2 => P5
V_FirstTracker_3 => P8
V_SecondTracker_1 -> P6
V_SecondTracker2 > P7
V_SecondTracker_3 -> P9

*****Accessible Memories Variables Assignment List:

Variable Name: W> Assigned Value:

V_NIOC Memory -> M3
V_SortMemory => Ml
V_ScreenMemory -> M2

*****Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:

V_Sort_I/O => B4
V_Screen_1/O => B7
V_FirstTrack_1/O -> B5
V_Second_Trackl/O W> B6

**Processor Class Name: SCREENERS

***Accessible Processors Variables List:

Variable Name: Class Restriction:

V_LocalScreener SCREENERS
V_Sorter 1 SORTERS
V_Sorter_2 SORTERS

C-4

V_Navigation_1 NAVIGATIONAL CONTROLLERS
V_Navigation_2 NAVIGATIONAL CONTROLLERS
V_Navigation_3 NAVIGATIONAL CONTROLLERS
V_FirstTracker_ 1 TRACKERS
V_FirstTracker_2 TRACKERS
V_FirstTracker_3 TRACKERS
V_SecondTracker_1 TRACKERS
V_SecondTracker_2 TRACKERS
V_SecondTracker_3 TRACKERS

***Accessible Memories Variables List:

Variable Name: Class Restriction:

V_ScreenMemory SCREEN MEMORY
V_FirstTrackMemory TRACK MEMORY
V_SecondTrackMemory TRACK MEMORY

***Accessible Busses Variables List:

Variable Name: Class Restriction

V_Sort_I/O SORT TO SCREEN
V_NIOC_I/O SCREEN WITH NIOC
V_FirstTrackI/O SCREEN WITH TRACK
V_SecondTrackI/O SCREEN WITH TRACK

***Processor Class Instantiation List:

****Processor Name: P3

Processor Class: SCREENERS

*****Accessible Processors Variables Assignment List:
Variable Name: -> Assigned Value:

V_Local_Screener -> P2
V_Sorter_1 => P10
V_Sorter_2 -> P1
V_NavigationI -> P11
V_Navigation_2 -> P12
V_Navigation_3 -> P13
V_First_Tracker_1 -> P4

C-5

V_FirstTracker_2 => P5
V_First_Tracker_3 W> P8
V_SecondTrackerI W> P6
V_SecondTracker_2 -> P7
V_SecondTracker_3 W> P9

*****Accessible Memories Variables Assignment List:

Variable Name: => Assigned Value:

V_ScreenMemory => M2
VFirst_TrackMemory => M4
V_SecondTrackMemory => M5

*****Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:

V_Sort_I/O => B3
VNIOC_I/O => B7
VFirst_TrackI/O W> B1
V_SecondTrackl/O -> B2

*"Processor Name: P2

Processor Class: SCREENERS

*****Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalScreener => P3
V_Sorter_l => P10
V_Sorter_2 W> P1
V_ Navigationl => P11
V_Navigation_2 => P12
V_Navigation_3 => P13
V_Firstjracker_ => P4
V_FirstTracker_2 => P5
V_First_Tracker_3 W> P8
V_SecondTracker_1 => P6
V_Second_Tracker_2 => P7
V_SecondTracker_3 => P9

C-6

*****Accessible Memories Variables Assignment List:

Variable Name: .> Assigned Value:

V_Screen_Memory => M2
V_FirstTrackMemory => M4
V_Second_TrackMemory => M5

*****Accessible Busses Variables Assignment List:

Variable Name: m> Assigned Value:

V_Sortl/O => B3
V_NIOC_I/O => B7
V_FirstTrackI/O => B1
V_SecondTrackI/O > 2

"Processor Class Name: SORTERS

***Accessible Processors Variables List:

Variable Name: Class Restriction:

V_LocalSorter SORTERS
V_Screener_1 SCREENERS
V_Screener_2 SCREENERS
V_Navigation_1 NAVIGATIONAL CONTROLLERS
V_Navigation_2 NAVIGATIONAL CONTROLLERS
V_Navigation_3 NAVIGATIONAL CONTROLLERS

***Accessible Memories Variables List:
Variable Name: Class Restriction:

V_Sort_Memory SORT MEMORY

***Accessible Busses Variables List:
Variable Name: Class Restriction

V_Screenl/O SORT TO SCREEN
V_NIOC_I/O SORT WITH NIOC

C-7

***Processor Class Instantiation List:

****Processor Name: P1

Processor Class: SORTERS

*****Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalSorter -> P10
V_Screener_1 -> P2
V_Screener_2 => P3
VNavigation_1 => P11
VNavigation_2 => P12
VNavigation_3 => P13

*****Accessible Memories Variables Assignment List:

Variable Name: => Assigned Value:

V_SortMemory => M1

*****Accessible Busses Variables Assignment List:

Variable Name: W> Assigned Value:

V Screenl/O W> B3
V_NIOC_I/O W> B4

****Processor Name: P10

Processor Class: SORTERS

*****Accessible Processors Variables Assignment List:
Variable Name: => Assigned Value:

V_Local_Sorter => P1
V_ScreenerI => P2
V_Screener_2 => P3
VNavigation_1 -> P11
VNavigation_2 -> P12
VNavigation_3 -> P13

C-8

*****Accessible Memories Variables Assignment List:
Variable Name: => Assigned Value:

V_SortMemory => M1

*****Accessible Busses Variables Assignment List:
Variable Name: => Assigned Value:

V_ScreenI/O -> B3
V_NIOCI/O => B4

**Processor Class Name: TRACKERS

***Accessible Processors Variables List:
Variable Name: Class Restriction:

V_Local._Tracker_1 TRACKERS
V_LocalTracker_.2 TRACKERS
V_Screener_1 SCREENERS
V_Screener_2 SCREENERS
V_Navigation_1 NAVIGATIONAL CONTROLLERS
V_Navigation_2 NAVIGATIONAL CONTROLLERS
V_Navigation_3 NAVIGATIONAL CONTROLLERS

***Accessible Memories Variables List:
Variable Name: Class Restriction:

V_TrackMemory TRACK MEMORY

***Accessible Busses Variables List:
Variable Name: Class Restriction

V_ScreenI/O SCREEN WITH TRACK
V_NIOC_I/O TRACK WITH NIOC

***Processor Class Instantiation List:

C-9

****Processor Name: P9

Processor Class: TRACKERS

*****Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalTracker_1 => P6
V_LocalTracker_2 => P7
V_Screener_1 => P2
V_Screener_2 => P3
VNavigation_1 => P11
VNavigation_2 => P12
VNavigation_3 => P13

*****Accessible Memories Variables Assignment List:

Variable Name: 1> Assigned Value:

V_TrackMemory => M5

****Accessible Busses Variables Assignment List:
Variable Name: => Assigned Value:

V_Screen_,/0 1> B2
V_NIOC_I/O => B6

"***Processor Name: P7

Processor Class: TRACKERS

*****Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalTracker_1 W> P6
V_LocalTracker_2 -> P9
V_Screener_1 => P2
V_Screener_2 => P3
VNavigationl => P11
VNavigation_2 => P12
VNavigation_3 m> P13

C-10

*****Accessible Memories Variables Assignment List:

Variable Name: => Assigned Value:

V_Track_Memory => M5

*****Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:

V_Screen_/O => B2
V_NIOCJI/O => B6

****Processor Name: P6

Processor Class: TRACKERS

*****Accessible Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalTracker_1 -> P7
V_LocalTracker_2 -> P9
V_Screener_1 => P2
V_Screener_2 -> P3
VNavigation_1 W> P11
VNavigation_2 -> P12
VNavigation_3 I> P13

*****Accessible Memories Variables Assignment List:

Variable Name: => Assigned Value:

V_TrackMemory => M5

*****Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:

V_Screen_l/O => B2
VNIOC_1/O -> B6

****Processor Name: P8

Processor Class: TRACKERS

C-II

*****Accessible Processors Variables Assignment List:
Variable Name: W> Assigned Value:

V_LocalTracker_1 => P4
V_LocalTracker_2 -> PS
V_Screener_1 => P2
V_Screener_2 => P3
V_NavigationAl -> P11
V_Navigation_2 -> P12
V_Navigation3 -> P13

*****Accessible Memories Variables Assignment List:
Variable Name: => Assigned Value:

V_TrackMemory => M4

*****Accessible Busses Variables Assignment List:
Variable Name: => Assigned Value:

V_Screenl/O => B1
V_NIOC_I/O -> B5

****Processor Name: P5
Processor Class: TRACKERS

****Accessible Processors Variables Assignment List:
Variable Name: -> Assigned Value:

V_LocalTracker_1 -> P4
V_LocalTracker_2 -> P8
V_Screener_1 -> P2
V_Screener_2 -> P3
VNavigation_1 -> P11
VNavigation_2 -> P12
VNavigation_3 -> P13

'"Accessible Memories Variables Assignment List:
Variable Name: -> Assigned Value:

C-12

V_Track_Memory => M4

*****Accessible Busses Variables Assignment List:

Variable Name: => Assigned Value:

V_Screen_1/O -> Bi
V_NIOC_I/O => B5

***Processor Name: P4

Processor Class: TRACKERS

****Accessible Processors Variables Assignment List:

Variable Name: -> Assigned Value:

V_LocalTracker_1 -> P5
V_LocalTracker_2 => P8
V Screener 1 M> P2
V_-Screener_-2 W> P3
VNavigation_1 -> P11
VNavigation_2 => P12
VNavigation_3 W> P13

*""*Accessible Memories Variables Assignment List:

Variable Name: -> Assigned Value:

VTrackMemory -> M4

*****Accessible Busses Variables Assignment List:

Variable Name: -> Assigned Value:

VScreen_1/O -> Bi
V_NIOC_I/O -> B5

*Memory Class List:

*Memory Class Name: NIOC MEMORY

Size: 8000000 Bytes

C-13

I/O Band Width: 16000000 Bytes/Second

***Client Processors Variables List:

Variable Name: Class Restriction:

V_LocalNIOC_1 NAVIGATIONAL CONTROLLERS
V_LocalNIOC_2 NAVIGATIONAL CONTROLLERS
V_LccalNIOC_3 NAVIGATIONAL CONTROLLERS

***Memory Class Instantiation List:

****Memory Name: M3

Memory Class: NIOC MEMORY

*****Client Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalNIOC_1 -> P11
V_LocalNIOC_2 -> P12
V_LocalNIOC_3 => P13

"Memory Class Name: SCREEN MEMORY
Size: 8000000 ByLes
I/O Band Width: 16000000 Bytes/Second

***Client Processors Variables List:

Variable Name: Class Restriction:

V_LocalScreener_1 SCREENERS
V_LocalScreener_2 SCREENERS
VNavigation_1 NAVIGATIONAL CONTROLLERS
V-Navigation_2 NAVIGATIONAL CONTROLLERS
V Navigation_3 NAVIGATIONAL CONTROLLERS

***Memory Class Instantiation List:

****Memory Name: M2
Memory Class: SCREEN MEMORY

*****Client Processors Variables Assignment List:

C-14

Variable Name: => Assigned Value:

V_LocalScreener_1 => P2
V_LocalScreener_2 => P3
V_Navigation_1 => P11
V_Navigation_2 => P12
V_Navigation_3 => P13

"Memory Class Name: SORT MEMORY
Size: 8000000 Bytes
I/O Band Width: 16000000 Bytes/Second

***Client Processors Variables List:

Variable Name: Class Restriction:

V_LocalSorter_1 SORTERS
V_Local_Sorter_2 SORTERS
V_Navigation_ NAVIGATIONAL CONTROLLERS
V_Navigation_2 NAVIGATIONAL CONTROLLERS
V_Navigation_3 NAVIGATIONAL CONTROLLERS

***Memory Class Instantiation List:

****Memory Name: M1
Memory Class: SORT MEMORY

*****Client Processors Variables Assignment List:

Variable Name: W> Assigned Value:

V_LocalSorter_1 -> P10
V_LocalSorter_2 -> P1
V_Navigation_1 -> P11
VNavigation_2 -> P12
VNavigation_3 => P13

*Memory Class Name: TRACK MEMORY

Size: 8000000 Bytes
I/O Band Width: 16000000 Bytes/Second

'Client Processors Variables List:

C-15

Variable Name: Class Restriction:

V_LocalTrackerI TRACKERS
V_LocalTracker_2 TRACKERS
V_LocalTracker_3 TRACKERS
V_Screener_1 SCREENERS
V_Screener_2 SCREENERS

***Memory Class Instantiation List:

****Memory Name: M5

Memory Class: TRACK MEMORY

*****Client Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_LocalTracker_1 => P6
V_Local_Tracker_2 -> P7
V_LocalTracker 3 => P9
V_ScreenerI => P2
V_Screener_2 => P3

""Memory Name: M4

Memory Class: TRACK MEMORY

*****Client Processors Variables Assignment List:

Variable Name: -> Assigned Value:

V_LocalTrackerI -> P4
V_LocalTracker_2 => P5
V_LocalTracker_3 => P8
V_Screener_1 -> P2
V_Screener_2 -> P3

*Bus Class List:

**Bus Class Name: SCREEN WITH NIOC

Effective Band Width: 12000000 Bytes/Second

***Client Processors Variables List:

C-16

Variable Name: Class Restriction:

V_Screener_1 SCREENERS
V Screener 2 SCREENERS
V-NIOC 1 NAVIGATIONAL CONTROLLERS
V_-NIOC_-2 NAVIGATIONAL CONTROLLERS
V_NIOC_3 NAVIGATIONAL CONTROLLERS

***Bus Class Instantiation List:

****Bus Name: B7

Bus Class: SCREEN WITH NIOC

*****Client Processors Variables Assignment List:

Variable Name: -> Assigned Value:

V_Screener_1 -> P2
V_Screener_2 -> P3
V_NIOC_I -> P11
V_NIOC_2 -> P12
V_NIOC_3 -> P13

**Bus Class Name: SORT WITH NIOC

Effective Band Width: 12000000 Bytes/Second

**'Client Processors Variables List:

Variable Name: Class Restriction:

V_Sorter_1 SORTERS
VSorter_2 SORTERS
V_NIOC_1 NAVIGATIONAL CONTROLLERS
V_NIOC_2 NAVIGATIONAL CONTROLLERS
V_NIOC_3 NAVIGATIONAL CONTROLLERS

***Bus Class Instantiation List:

****Bus Name: B4

Bus Class: SORT WITH NIOC

**"*Client Processors Variables Assignment List:

C-17

Variable Name: M> Assigned Value:

V_Sorter_1 M> P10
V_Sorter_2 => P1
V_NIOC_1 => P11
V_NIOC_2 => P12
V_NIOC_3 => P13

*"Bus Class Name: SORT TO SCREEN

Effective Band Width: 12000000 Bytes/Second

***Client Processors Variables List:

Variable Name: Class Restriction:

V_Sorter_1 SORTERS
V_Sorter_2 SORTERS
VScreener_1 SCREENERS
V_Screener_2 SCREENERS

***Bus Class Instantiation List:

****Bus Name: B3

Bus Class: SORT TO SCREEN

*****Client Processors Variables Assignment List:

Variable Name: => Assigned Value:

V_Sorter_1 => P10
V_Sorter_2 => P1
V_Screener_1 => P2
V_Screener_2 M> P3

"Bus Class Name: TRACK WITH NIOC

Effective Band Width: 12000000 Bytes/Second

***Client Processors Variables List:

Variable Name: Class Restriction:

V_Tracker_1 TRACKERS
V_Tracker_2 TRACKERS

C-18

V._Tracker_3 TRACKERS
V_NIOCI NAVIGATIONAL CONTROLLERS
V_NIOC_2 NAVIGATIONAL CONTROLLERS
V_NIOC_3 NAVIGATIONAL CONTROLLERS

***Bus Class Instantiation List:

****Bus Name: B6

Bus Class: TRACK WITH NIOC

****Client Processors Variables Assignment List:
Variable Name: => Assigned Value:

V_Tracker_1 => P6
V_Tracker_2 -> P7
V_Tracker_3 M> P9
V_NIOC_1 => P11
V_NIOC_2 => P12
V_NIOC_3 => P13

****Bus Name: B5

Bus Class: TRACK WITH NIOC

*****Client Processors Variables Assignment List:
Variable Name: => Assigned Value:

V_Tracker._1 -> P4
V_Tracker_2 -> P5
V_Tracker_3 -> P8
V_NIOC_1 => P11
V_NIOC_2 M> P12
V_NIOC_3 -> P13

**Bus Class Name: SCREEN WITH TRACK

Effective Band Width: 12000000 Bytes/Second

**Client Processors Variables List:

Variable Name: Class Restriction:

V_Screener_1 SCREENERS

C-19

V_Screener_2 SCREENERS
V_Tracker_1 TRACKERS
V_Tracker_2 TRACKERS
V_Tracker_3 TRACKERS

***Bus Class Instantiation List:

****Bus Name: B2
Bus Class: SCREEN WITH TRACK

*****Client Processors Variables Assignment List:
Variable Name: => Assigned Value:

V_Screener_1 => P2
V_Screener_2 => P3
V_Tracker_1 => P6
V_Tracker_2 => P7
V_Tracker_3 => P9

****Bus Name: B1
Bus Class: SCREEN WITH TRACK

**'"*Client Processors Variables Assignment List:
Variable Name: => Assigned Value:

V_Screener_1 => P2
V_Screener_2 => P3
V_Tracker_1 => P4
V_Tracker_2 W> P5
V_Tracker_3 -> P8

*Task List:

Task Name: AOAIAOSP Tracking
Task Class Name: AOSP Tracking
Processor Ensemble Name: AOSP Tracking
Task Minimum Start Time: O.OOOOOOE+00
Task Data Set Size: 50
Task Class Author: TBE
Task Class Creation Date: 07/19/89

C-20

Task Class Validation Date: 08/10/89

Task Class Validation Time: 13:38:27.07

*Input Start Time Dependency Variables Assignments List:

Variable Name: -=> Assigned Value:

--- List Empty ---

**Output Start Time Dependency Variables Assignments List:

Variable Name: -- > Assigned Value:

--- List Empty---

*Segment Class Table

***Segment Class Name: ANGULAR RATE SMOOTHING LAG

Target Processor Class: SCREENERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N = Data Set Size:
R - Data Set Size Reduction Factor:

M= R* N:
F(N) - G(M) - 01 + (02* M) + (03 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - 0.OOOOOOE+00
02 - 5.800000E-06 L2 - O.OOOOOOE+00

03 - 0.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreen-Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - 0.000000E+00 Li - 0.000000E+00

02 - 3.840000E+00 L2 - 0.OOOOOOE+00
03 - 0.OOOOOOE+00

C-21

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 3.840000E+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Memory Variable Name: VSecondTrack._Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - 3.840000E+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 3.840000E+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = 3.840000E+00 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory Variable Name: V_SecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li O.OOOOOOE+00

02 - 3.840000E+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSortl/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.000000E+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+oo
03 l O.OOOOOOE+O0

Bus Variable Name: VNIOC_I/O

C-22

Bus Variable Class Restriction: SCREEN WITH NIOC
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: V_-FirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1 .OOOOOOE+OO Q1 - O.OOOOOOE+00O LI - O.OOOOOOE+OO

Q2 - 6.900000E-O1 L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 - 6.900000E-O1 L2 - O.OOOOOOE+OO
Q3 - 0.000000E+00

***Segment Class Name: INITIALIZATION 3
Target Processor Class: NAVIGATIONAL CONTROLLERS

Number of Instantiations: I
Segment Class Type: Application Code

""Transfer Functions List:
N Data Set Size:
R =Data Set Size Reduction Factor:

M=R *N:
F(N) - G(M) - 01 + (02'* M) + (03 *M**2) + (Li1 +(L-2* M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO
02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: V_-NIOCMemory
Memory Variable Class Restriction: NIOC MEMORY
R - 1 .OOOOOOE+OO 01 - 1 .994540E+05 Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

C-23

Memory Variable Name: VSort.Memory
Memory Variable Class Restriction: SORT MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.000000E+00 Q1 - O.OOOOOOE+00 L1 - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VNIOCQMemory
Memory Variable Class Restriction: NIOC MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - 0.0 ,O00E+00

02 - 0.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - 0.OOOOOOE+00

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 01 - 0.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 0.OOOOOOE+00 L2 - 0.OOOOOOE+00
Q3 - 0.OOOOOOE+00

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - 0.OOOOOOE+00 Li - 0.OOOOOOE+00

02 - 0.OOOOOOE+00 L2 - 0.OOOOOOE+00
03 - 0.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSort_lI/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - 0.OOOOOOE+00

02 = 0.000000E+00 L2 - 0.OOOOOOE+00
03 = 0.OOOOOOE+00

C-24

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1 .OOOOOOE+OO Q1 - O.OQOOOOE.OQ Li - 0.000000E+00

G- O.OOOOOOE+OO L2 - O.OOOOOOE+OO
Q3 - O.OOOOOOE+OO

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction-: TRACK WITH NIOC
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
Q3 -OOOOOOOE+OO

Bus Variable Name: VSecondTrack_1/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - I .OOOOOOE+OO Q1 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 = O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

***Segment Class Name: NAVIGATION UPDATE
Target Processor Class: NAVIGATIONAL CONTROLLERS
Number of Instantiations: 1
Segment Class Type: Application Code

""*Transfer Functions List:
N - Data Set Size:
R - Data Set Size Reduction Factor:

M -R *N:
F(N) - G(M) - 01 + (02 *M) + (03 *M**2) + (LI1 +(L2 *M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOOE+OO 01 - 4.999450E-01 Li - O.OOOOOOE+OO
02 - O.OOOOOOE+OO 12 - 0O00OOOOOE+00

03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: V_-NIOC _Memory
Memory Variable Class Restriction: NIOC MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO

C-25

Q3 - 0.000000E+00

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.000000E+00 Q1 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 L1 0.000000E+00

02 = O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VNIOC_Memory
Memory Variable Class Restriction: NIOC MEMORY
R - 1.OOOOOE+00 01 - 1.950800E+04 LI - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 -O.OOOOOOE+00

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00 l

03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSort_I/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.000000E+00 01 - 2.100000E+03 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

C-26

I

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1.000000E+00 01 - 0.000000E+00 LI - 0.OOOOOOE+00

02 = 0.000000E+00 L2 - 0.OOOOOOE+00
Q3 - 0.OOOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.000000E+00 01 - 4.200000E+03 Li - 0.000000E+00

02 - 0.000000E+00 L2 - 0.000000E+00
03 - 0.000000E+00

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - 4.200000E+03 LI - O.OOOOOOE+00

02 - 0.000000E+00 L2 - 0.OOOOOOE+00
03 - 0.OOOOOOE+00

***Segment Class Name: INITIALIZATION 1

Target Processor Class: SORTERS
Number of Instantiations: 1
Segment Class Type: Application Code

*Transfer Functions List:
N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) - 01 + (Q2 * M) + (03 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.000000E+00 01 - 0.OOOOOOE+00 Li - 0.000000E+00
02 - 0.000000E+00 L2 - 0.000000E+00

03 - o.ooooooE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.000000E+00 01 - 1.528620E+05 Li - 0.000000E+00

C-27

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - 0.000000E+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+0 01 - O.OOOOOOE+00 L1 - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SORT TO SCREEN
R = 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SORT WITH NIOC
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: MEASUREMENT PROCESSING LAG JOIN
Target Processor Class: SORTERS
Number of Instantiations: 1

Segment Class Type: Join

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) - 01 + (02 * M) + (03 * M**2) + (Li +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00

C-28

I
03 - O.OOOOOOE+O0

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOQE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: MEASUREMENT PROCESSING LAG

Target Processor Class: SORTERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:

C-29

R - Data Set Size Reduction Factor:
M - R * N:
F(N) - G(M) - 01 + (Q2 *M) + (03 * M**2) + (Li1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.GOOOOOE+OO 01 - 1.191800E-03 Li - O.OOOOOOE+OO
02 - 2.080000E-05 L2 - O.OOOOOOE+OO

03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R = 1 .QOOOOOE+OO 01 - -6.900000E+01 Li = O.OOOOOOE+CO

02 = O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1 .OOOOOOE+OO 01 - 6.900000E+01 Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 = O.QOOOOOE+QO

Bus 1/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1 .OOOOOOE+OO 01 - 2.600000E+01 Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: VNIOCI/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1 .OOOOOE+OO 01 - 5.400000E-01 LI - O.OOOOOOE+OO

02 - 3.600000E-02 L2 - O.OOOOOOE+OO
03 . r,.OOOOOOE+OO

C-30

***Segment Class Name: MEASUREMENT PROCESSING

Target Processor Class: SORTERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R -Data Set Size Reduction Factor:

M R*N:
F(N) - G(M) - 01 + (Q2 * M) + (03 * a**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Functioo Coeficients:

R - 1.OOOOOOE+00 01 - 2.264330E-02 Li - O.OOOOOOE+00
02 - 3.952000E-04 L2 - O.OOOOOOE+00

03 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 Q1 - -1.311 OOOE+03 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOE+00
Q3 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficiets:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 Q1 . 1.974300E+04 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00

C-31

03 - O.OOOOOOE+00

Bus Variable Name: V NIOC I/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.OOOOOOE+00 01 - 1.026000E+03 L i - O.000000E+00

02 - 6.840000E-01 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

***Segment Class Name: REFERENCE STAR MATCHING JOIN

Target Processor Class: NAVIGATIONAL CONTROLLERS
Number of Instantiations: 1

Segment Class Type: Join

****Transfer Functions List:

N = Data Set Size:
R = Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) . Q1 + (Q2 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
02 - O.OOOOOE+00 L2 - O.OOOOOOE+00

Q3 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VNIOCMemory
Memory Variable Class Restriction: NIOC MEMORY
R - 1.OOOOOOE+00 01 - 0.00000,1E+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 O.OOOOOOE-t 00 L2 - O.OOOOOOE+00
Q3 = 0.000000E+U0

Memory Variaole Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY

C-32

R - 1 .OOOOOOE+00 01 - O.OOOOOOE+OO Li - 0.OOOOOOE+00
02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO

03 - O.OOOOOOE+OO

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: V_-NIOC _Memory
Memory Variable Class Restriction: NIOC MEMORY
R - 1 .OOOOOOE+00 01 - O.OOOOOOE+00O LI - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - 0.00000OE+00
03 - O.OOOOOOE+OO

Memory Variable Name: V_-Sort_-Memory
Memory Variable Class Restriction: SORT MEMORY
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: VScreen-Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOE+OQ

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus 1/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSo rtI/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+00O L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1 .OOOOOOE+00 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - 0.000000E+00
03 - OOOOOOE+OO

Bus Variable Name: V FirstTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OQ

C-33

02 - O.OOOOOOE+O0 L2 - O.OOOOOOE+O0
Q3 - OOOOOOOE+O0

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

***Segment Class Name: REFERENCE STAR MATCHING
Target Processor Class: NAVIGATIONAL CONTROLLERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N = Data Set Size:
R = Data Set Size Reduction Factor:

M=R*N:
F(N) = G(M) - Q1 + (02 * M) + (03 * M**2) + (LI +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 Q1 - 6.OOOOOOE+00 Li - O.OOOOOOE+00
Q2 - 4.OOOOOE-03 L2 - O.OOOOOOE+00

Q3 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VNIOCMemory
Memory Variable Class Restriction: NIOC MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 LI - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 , O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VScreenMemory

C-34

Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 -O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VNIOCMemory
Memory Variable Class Restriction: NIOC MEMORY
R - 1.OOOOOOE+00 Q1 - 2.969600E+04 Li - O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/0 Requirements Transfer Function Coeficients:

Bus Variable Name: VSort_I/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.000000E.-00 01 - O.OOOOOOE+00 L1 - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus Variable Name: VScreenl/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC

C-35

R . 1 .OOOOOOE+OO 01 - 4.OOOOOOE+O1 Li - O.OOOOOOE+OO
02 - O.OOOOOE-i-O L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: V_-Second_-TrackI /O
Bus Variabie Class Restriction: TRACK WITH NIOC
R - 1 .OOOOOOE+OO 01 - 4.OOOOOOE+O1 LI - O.OOOOOOE+00O

02 - OOOOOOE+OO L2 - O.OOOOOOE+OO
03 -OOOOOOOE+OO

***Segment Class Name: OBJECT SORTING LAG JOIN
Target Processor Class: SORTERS
Number of Instantiations: 1

Segment Class Type: Join

**"Transfer Functions List:
N . Data Set Size:
R - Data Set Size Reduction Factor:

M -R *N:
F(N) - G(M) - 01 + (02 *M) + (03'* M**2) + (Li1 +(L2' M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO
02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMAmory
Memory Variable Class Restriction: SORT MEMORY
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -OOOOOOOE+OO L2 - O.OOOOOUE+OO
03 -O.OOOOOOE+OO

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: V_-Sort_-Memory
Memory Variable Class Resriction: SORT MEMORY
R - 1.OOOOOOE+OO 01 - O.OCJ000E+OO Li - O.OOOOOOE+OO

C-36

02 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: OBJECT SORTING LAG

Target Processor Class: SORTERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N = Data Set Size:
R - Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - Q1 + (Q2 * M) + (03* M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 Q1 - 1.000000z-06 Li - O.OOOOOOE+00
02 - 5.200000E-06 L2 - 0.000000E+00
03 - 9.OOOOOOE-07

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - -2.300000E+00 L2 - O.OOOOOOE+00

C-37

03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VSort_- Memory
Memory Variable Class Restriction: SORT MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 2.300000E+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Bus I/0 Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 01 - 2.OOOOOOE+00 Li O.OOOOOOE+00

Q2 - 2.300000E+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.OOOOOE+00 Q1 - O.OOOOOOE+00 Li O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Segment Class Name: OBJECT SORTING

Target Processor Class: SORTERS
Number of Instantiations: 1
Segment Class Type: Application Code

***v i ransfer Functions List:
N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) - 01 + (02 * M) + (Q3 * M**2) + (LI +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - 1.900000E-05 L1 - O.OOOOOOE+00
02 - 9.900000E-05 L2 - O.OOOOOOE+00
03 - 1.800000E-07

C-38

I

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - -4.370000E+01 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 01 - 1.228800E+04 LI - O.OOOOOOE+00

02 - 4.370000E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 01 - 1.760000E+02 LI - O.OOOOOE+00

02 - 4.370000E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

'Segment Class Name: INITIALIZATION 2
Target Processor Class: SCREENERS
Number of Instantiations: 1
Segment Class Type: Appliction Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

C-39

, , i i l IoI"

M -R* N:
F(N) - G(M) - Q1 + (Q2 *M) + (03 *M**2) + (Li +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO
02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO

03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+OO 01 - 2.681800E+05 Li - O.OOOOOOE+OO

02 - 4.066940E-01 L2 - O.OOOOOOE+OO
03 - 0.000000E+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .000000E+00 Q1 - O.OOOOODE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOQE+OO L2 - O.OOOOOOE+OO
03 - 0.000000E+00

Memory Variable Name: VSecondjrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO Q1 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOQOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: V_-First_-TrackMemory
Memory Variable Class Restriction: TRACIK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO

C-40

Q3 - 0.000000E+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 O.OOOOOOE+00 L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSort_I/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 -O.OOOOOOE+00

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.000000E+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: OBJECT SCREENING LAG JOIN

Target Processor Class: SCREENERS
Number of Instantiations: 1

Segment Class Type: Join

****Transfer Functions List:

N - Data Set Size:

C41

R - Data Set Size Reduction Factor:
M - R * N:
F(N) - G(M) = 01 + (Q2 * M) + (03 *M**2) + (LI +(L2 *M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOOE+OO Q1 - O.OOOOOOE+OO Li - O.OOOOOOE+OO
Q2 - O.OOOOOOE+OO L2 - O.OOOOOE+OO

03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

Q2 - O.OOOOOOE+OO L2 = O.OOOOOOE+OO
03 = O.OOOOOOE+OO

Memory Variable Name: V_-First_-Track_-Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 01 - 0.000000E+00 Li - O.OOOOOOE+OO

02 - O.OOOOOQE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: V_-Second .. TrackMemory
Memory Variable Class Restriction- TRACK MEMORY
R - I .OOOOOOE+OO 01 O.OOOOOOE+OO LI - O.OOOOOOE+OO

Q2 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenjlemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

C-42

02 = 0.000000E+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R . 1.000000E+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSortI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 Q1 = O.OOOOOOE+00 LI - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

***Segment Class Name: OBJECT SCREENING LAG

Target Processor Class: SCREENERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

C-43

N m Data Set Size:
R = Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) = 01 + (02 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 01 = 1.700000E-07 Li - O.OOOOOOE+00
02 - 9.OOOOOOE-07 L2 - O.OOOOOOE+00
03 - 4.OOOOOOE-07

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R = 1.OOOOOOE+00 01 = O.OOOOOOE+00 Li = O.OOOOOOE+00

Q2 = -3.660246E-01 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R = 1.OOOOOOE+00 01 = O.OOOOOOE+00 Li - O.OOOOOOE+00

02 -0.OOOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = 3.660246E-01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY

C-44

Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSort_I/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1.OOOOOOE+00 Q1 - O.OOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus Variable Name: VFirstTrack_1/0
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 1.274900E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VSecondTrackjl/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 1.274900E+01 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: HANDOVER JOIN
Target Processor Class: NAVIGATIONAL CONTROLLERS
Number of Instantiations: 1
Segment Class Type: Join

C-47

***Transfer Functions List:
N -Data Set Size:
R -Data Set Size Reduction Factor:

M R *N:
F(N) - G(m) - 01 + (02'* M) + (03 * M**2) + (LI +(L2 *M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOOE+00 01 - 0.000000E+00 Li - 0.000000E+00
Q2 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: V_-NIOC_Memory
Memory Variable Class Restriction: NIOC MEMORY
R = 1 .OOO000E+00 01 - O.OOOOOOE OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: VSorL-Memory
Memory Variable Class Restriction: SORT MEMORY
R - 1 .OOOO0OE+00 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: V-Screen_Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .OOOOOOE+00 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -OOOOOOOE+OO L2 - 0.000000E+00
03 -OOOOOOOE+OO

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: VNIOCjvlemory
Memory Variable Class Restriction: NIOC MEMORY
R - 1 .000000E+00 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE-i.O 12 - 0.OOOOOOE+00
03 - O.OOOOOOE+OO

C-48

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory Variable Name: VScreen_Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSortI/O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 0.000000E+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: HANDOVER

Target Processor Class: NAVIGATIONAL CONTROLLERS
Number of Instantiations: 1

C-49

Segment Class Type. Application Code

**** Transfer Functions List:
N - Data Set Size:
R -Data Set Size Reduction Factor:

M=R *N:
F(N) - G(M) - 01 + (Q2 * M) + (03 *M**2) + (Li1 +(L2 *M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO
02 - 9.375000E-04 L2 - O.OOOOOOE+OO

03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VNlOCMemory
Memory Variable Class Restriction: NIOC MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: VSortMemory
Memory Variable Class Restriction: SORT MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: VNlOC-Memory
Memory Variable Class Restriction: NIOC MEMORY
R - 1 .OOOOOOE+OO 01 - 3.020800E+04 Li - O.OOOOOOE+OO

02 - 8.958135E+02 L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

C-50

Memory Variable Name: VSort_-Memory
Memory Variable Class Restriction: SORT MEMORY
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

Q2 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: V_,Screen-Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+Oo L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSortI /O
Bus Variable Class Restriction: SORT WITH NIOC
R - 1 .OOOOOOE+OO Q1 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE.OO
03 - O.OOOOOOE+OO

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction:"SCREEN WITH NIOC
R - 1 .OOOOOOE+OO 01 - O.OOOOOQE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+00O L2 - 0.000000E+00
03 - O.OOOOOOE+OQ

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OQ L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1 .000000E+00 01 - O.OOOOOOE+OO LI - O.OOOOOOE+0O

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

***Segment Class Name: TRACK FITTING JOIN
Target Processor Class: TRACKERS

C-51

Number of Instantiations: 2

Segment Class Type: Join

****Transfer Functions List:

N . Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) - Q1 + (02 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
Q2 - 0.000000E+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOE+00 Li - O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 -O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 L1 - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreen_1/0
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O

C-52

Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 -O.OOOOOOE+00

***Segment Class Name: TRACK FITTING

Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) - Q1 + (02 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
02 - 6.354600E-03 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 -O.OOOOOOE+00

Memory I/0 Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - 4.454400E+04 Li - 0.000000E+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

C-53

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R . 1.000000E+00 Q1 = 0.000000E+00 Li = 0.000000E+00

Q2 - 3.268080E+00 L2 - O.OOOOOOE+00
Q3 = 0.000000E+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC

R - 1.000000E+00 Q1 . O.OOOOOOE+00 Li = 0.000000E+00
Q2 = 0.000000E+00 L2 - O.OOOOOOE+00
03 = 0.000000E+00

***Segment Class Name: TRACK INITIALIZATION LAG
Target Processor Class: TRACKERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R = Data Set Size Reduction Factor:

M=R*N:
F(N) = G(M) - 01 + (02 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R 1.000000E+00 Q1 - 2.880000E-01 Li - O.OOOOOOE+00
Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

C-54

Memory Variable Name: VTrack_Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+OO

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 Q1 - 5.400000E+01 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - 1.140000E+02 Li - O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

***Segment Class Name: TRACK INITIALIZATION

Target Processor Class: TRACKERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N = Data Set Size:
R = Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - 01 + (Q2 * M) + (03 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - -2.880000E-01 Li - O.OOOOOOE+00
02 - 1.394380E-02 L2 - 0.000000E+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory

C-55

Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li .0.000000E+00

Q2 - O.OOOOOOE+00 L2 . 0.000000E+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 Q1 - 5.785600E+04 LI - O.OOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreen_/Oi
Bus Variable Class Restriction: SCREEN WITH TRACK
R = 1.OOOOOOE+00 Q1 - -5./00000E+01 LI - O.OOOOOOE+00

Q2 = 2.614464E+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 Q1 - -1.140000E+02 Li - 0.000000E+00

Q2 - 5.519424E+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

***Segment Class Name: RADIOMETRIC INITIALIZATION
Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

""Transfer Functions List:
N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(Mv) - 01 + (02 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

C-56

I
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 2.032900E-03 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = 4.798989E+01 L2 - O.OOOOOOE+00
Q3 -O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - 4.352000E+04 Li - O.OOOOOOE+00

Q2 - 4.798989E+01 L2 - O.OOOOOOE+00
03 = O.OOOOOQE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOO+00 L2 = O.OOOOOOE+00
03 - 0.000000E+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - 1.000000E+00

***Segment Class Name: DESIGNATION INITIALIZATION

Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: App!'cation Code

C-57

****Transfer Functions List:
N = Data Set Size:
R = Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - 01 + (Q2 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.000000E+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00
Q2 - 5.072000E-04 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrack_Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - 7.680000E+03 Li - O.OOOOOOE+00

Q2 - 9.597648E+01 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00

C-58

Q3 - O.OOOOOOE+00

"Segment Class Name: PREDICTION INITIALIZATION

Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

""Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M=R'N:
F(N) - G(M) - 01 + (02 * M) + (03 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00
02 - 2.277500E-03 L2 - 0.OOOOOOE+00

03 - 0.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = 0.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 = 0.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - 9.062400E+04 Li - O.OOOOOOE+00

02 - 4.799013E+00 L2 - 0.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK

C-59

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
Q2 - 2.114811E+O1 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 L1 - O.OOOOOOE+00

02 - 4.286559E+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: CGP LAG JOIN

Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Join

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - 01 + (02 * M) + (03 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
Q2 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 , O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

C-60

Q2 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenl/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 Q1 O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 -O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

***Segment Class Name: CANDIDATE GENERATION PROCESS LAG
Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) = G(M) - Q1 + (02 * M) + (03 * a**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - 2.481225E-01 Li - O.OOOOOOE+00
02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrack._Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 0.000000E+00 L2 - O.OOOOOOE+00

C-61

03 - O.OOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - 7.680000E+02 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R = 1.OOOOOOE+00 01 = 2.232000E+02 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

***Segment Class Name: CANDIDATE GENERATION PROCESS
Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) - Q1 + (02 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - -2.481225E-01 LI - O.OOOOOOE+00
02 - 2.725300E-02 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

C-62

I

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+OO 01 - 0.000000E+00 L1 - 0.000000E+00

Q2 - 0.000000E+00 L2 - 0.000000E+00
Q3 - 0.000000E+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 01 - 4.172800E+04 L1 - 0.000000E+00

Q2 - 1.227571E+02 L2 - 0.000000E+00
Q3 - 0.000000E+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.000000E+00 01 - -2.232000E+02 Li - 0.000000E+00

02 - 1.778112E+01 L2 - 0.000000E+00
Q3 - 0.000000E+00

Bus Variable Name: VNIOCI/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1 .000000E+00 01 - 0.000000E+00 LI - 0.000000E+00

Q2 - 0.000000E+00 L2 - 0.000000E+00
Q3 - 0.000000E+00

***Segment Class Name: CGP TRACK ACCEPT MESSAGE HANDLER
Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

C-63

M -R *N:

F(N) - G(M) - 01 + (02 *M) + (03 *M**2) + (Li1 +(L2 *M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO
02 - 1 .920000E-05 L2 - O.OOOOOOE+OO

03 . O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOE+OO 01 - O.OOOOQOE+OO Li - O.OOOOOOE+OO

02 - -5.205683E+01 L2 - O.OOOOOOE+OO
03 - 0).000000E+00

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - 5.205683E+01 L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus 1/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - 0.000000E+00
03 - O.OOOOOOE+OO

Bus Variable Name: VNIOC_1/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
Q3 - O.OOOOOOE+OO

C-64

***Segment Class Name: ANGULAR RATE SMOOTHING LAG JOIN
Target Processor Class: SCREENERS
Number of Instantiations: 1

Segment Class Type: Join

""Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R'N:
F(N) - G(M) - Q1 + (02 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
Q2 - O.OOOOOOE+00 L2 = O.OOOOOOE+00

Q3 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VFirstTrack_Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY

C-65

R - 1.000000E+00 01 -O.OOOOOOE+OO LI - O.OOOOOOE+OO
02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO

03 - O.OOOOOOE+OO

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 -O.OOOQOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - I .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

Bus 1/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSortI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE-i-O

02 . O.OOOOOOE+OO L2 - O.OOOOOOE+QO
03 - O.OOOOOOE+OQ

Bus Variable Name: VNIOC_1/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+00O L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.000000E+00 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

Q2 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

C-66

***Segment Class Name: TDM INITIAL INITIATOR LOADING

Target Processor Class: SCREENERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - 01 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.000000E+00 01 - 6.OOOOOOE-04 LI - O.OOOOOOE+00
Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory

C-67

Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .000000E+00 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: V_-First_-Track_-Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - OOOOOOE OO

Memory Variable Name: V_-Second_Track_-Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSort_1/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - OOOOOOE+OO L2 - O.OOOOOOE+OO
03 =O.OOOOOOE+OO

Bus Variable Name: VNIOC_1/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1 .000000E+00 01 - 6.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1 .OOOOOOE+OO 01 - 6.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -OOOOOOOE+OO L2 - O.OOOOOOE+OO
03 -OOOOOOOE+OO

C-68

***Segment Class Name: ANGULAR RATE SMOOTHING

Target Processor Class: SCREENERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - Q1 + (02 * M) + (03 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
Q2 - 1.093000E-04 L2 - O.OOOOOOE+00

Q3 = O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 7.296000E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = 7.296000E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 L1 - O.OOOOOOE+00

02 - 7.296000E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

C-69

Memory Variable Name: VScreen_Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - 2.611200E+04 L1 - O.OOOOOOE+00

Q2 - 7.296000E+01 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 7.296000E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 7.296000E+01 L2 - O.OOOOOE+00
03 - O.OOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSort,_/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOQOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - 1.311000E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - 1.311000E+O1 L2 - O.OOOOOOE+00

C-70

03 - O.OOOOOOE+OO

**Segment Class Name: TDM BUILD CAND TRACK MSG JOIN 1
Target Pxocessor Class: SCREENERS

Number of Instantiations: I
Segment Class Type: Join

****Transfer Functions List:
N - Data Set Size:
R -Data Set Size Reduction Factor:

M R *N:
F(N) - G(M) - 01 + (02 * M) + (03 *M**2) + (Li +(L2 *M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OQ
02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO

03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 -OOOOOOOE+OO

Memory Variable Name: V_First_Track-Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -OOOOOOOE+OO L2 - O.OOOOOOE+OO
03 -OOOOOOOE+OO

Memory Variable Name: V_-Second_-Track_-Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO LI - O.OCG3OOOE+OO

02 - O.OOOOOOE.OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory I/O Requirements Transfer Function Coeficients:

C-71

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSortI/O
Bus Variable Class Restriction: SORT TO SCREEN
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1.OOOOOOE+00 01 - 0.000000E+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

C-72

Q2 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OQ

**Segment Class Name: TDM BUILD CAND TRACK MSG JOIN 2
Target Processor Class: SCREENERS

Number of Instantiations: I
Segment Class Type: Join

""*Transfer Functions List:
N -Data Set Size:
R -Data Set Size Reduction Factor:

M R *N:
F(N) - G(M) - 01 + (02 *M) + (03 *M**2) + (Li1 +(L2 *M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOOE+OO 01 . O.OOOOOOE+OO Li - O.OOOOOOE+OO
Q2 = O.OOOOOOE+OO L2 - O.OOOOOOE+OO

03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreen-Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .000000E+00 01 - O.OOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+OO 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 -OOOOOOOE+OO L2 - O.OOOOOOE+OO
03 -OOOOOOOE+OO

Memory Variable Name: V_-Second_-Track_-Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .000000E+00 01 - O.OOOOOOE+OO LI - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

C-73

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R = 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R = 1.OOOOOOE+00 Q1 - O.000000E+00 LI - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 = O.OOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSort_I/O
Bus Variable Class Restriction: SORT TO SCREEN
R = 1.OOOOOOE+00 01 = O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus Variable Name: VFirstTrackl/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK

C-74

R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO
02 - O.OOOOOOE+OO L2 - O.OOOOOOE+00O

03 - O.OOOOOOE+OO

***Segment Class Name: TDM BUILD CANDIDATE TRACK MSG
Target Processor Class: SCREENERS

Number of Instantiations: 1
Segment Class Type: Application Code

""*Transfer Functions List:
N - Data Set Size:
R - Data Set Size Reduction Factor:

M -R *N:
F(N) - G(M) - 01 +' (02 *M) +, (03 * M**2) + (Li1 +(L2 *M))LOG2(M)j

Run Time Transfer Function Coeficients:

R = 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO
02 - 3.4300O0E-05 L2 - O.OOOOOOE+OO

03 - O.OOOOOOE+OO

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreen-Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

Memory Variable Name: VFirstTrack_Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.000000O
03 - O.OOOOOOE+OO

Memory Variable Name: V_-Second_-TrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+OO

C-75

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 = 9.295872E+01 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory Variable Name: VSecondjTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R 1.OOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 = O.OOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSort_I/O
Bus Variable Class Restriction: SORT TO SCREEN
R = 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VFirstTrackl/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 3.340704E+01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VSecondTrackI/O

C-76

Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - 3.340704E+01 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

***Segment Class Name: TDM REMAINING INITIATOR LOADING

Target Processor Class: SCREENERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) = 01 + (Q2 * M) + (Q3 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 Q1 - -6.OOOOOOE-04 Li - O.OOOOOOE+00
02 - 2.160000E-05 L2 - O.OOOOOOE+00

Q3 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - 0.000000E+00

C-77

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R = 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSortI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li = O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - -6.000000E+00 LI - O.OOOOOOE+00

02 - 2.155200E-01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

C-78

Bus Variable Name: VSecondTrack_/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.000000E+00 01 - -6.OOOOOOE+00 LI - O.OOOOOOE+00

02 - 2.155200E-01 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: TDM TRACK ACCEPT/REJECT MSG HAND
Target Processor Class: SCREENERS

Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R Data Set Size Reduction Factor:

M R*N:
F(N) - G(M) - Q1 + (02 * M) + (03 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
02 - 8.8100OOE-05 L2 - O.OOOOOOE+00

Q3 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - -5.045910E+01 L2 - 0.000000E+00
Q3 - O.OOOOOOE+00

Memory Variable Name: VFirstTrack_Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory itariable Name: V_.SecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00

C-79

03 - O.OOOOOOE+OO

Memory 1/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreen_Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1 .OOOOOOE+OO 01 -3.174400E+04 Li - O.OOOOOOE+OO

02 -5.365456E+01 L2 - O.OOOOOOE+OO
03 -OOOOOOOE+OO

Memory Variable Name: V-First_Track-Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -O.OOOOOOE+OO L2 - O.OOOOOOE+OO
03 =O.OOOOOOE+OO

Memory Variable Name: VSecond_TrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 -OOOOOOQE+OO L2 = O.OOOOOOE+OO
03 -OOOOOOOE+OO

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: V_SortI /O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 0 .000000E+00 L2 - O.OOOOOOE+OO
03 -O.000000O

Bus Variable Name: VNIOCI/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+00O Li - O.OOOOOOE+OO

02 -OOOOOOOE+OO L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1 .OOOOOOE+OO 01 - O.OOOOOOE+OO Li - O.OOOOOOE+OO

02 - 5.228928E+00 L2 - O.OOOOOOE+OO
03 -O.OOOOOOE+OO

C-80

Bus Variable Name: VSecondTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 L1 - O.OOOOOOE+00

02 - 5.228928E+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

***Segment Class Name: PREDICTED WINDOW FILE SORT

Target Processor Class: SCREENERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - Q1 + (Q2 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00
02 - 9.OOOOOOE-06 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VScreenMemory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

Q2 - 7.320492E+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 L1 - O.OOOOOOE+00

C-81

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VScreen_Memory
Memory Variable Class Restriction: SCREEN MEMORY
R - 1.OOOOOOE+00 01 - 7.168000E+03 LI - O.OOOOOQE+00

Q2 - 7.320492E+00 L2 = O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory Variable Name: VFirstTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R = 1 .000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory Variable Name: VSecondTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VSortI/O
Bus Variable Class Restriction: SORT TO SCREEN
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
Q3 - O.OOOOOQE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: SCREEN WITH NIOC
R - 1 .000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00i

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus Variable Name: VFirstTrackI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00

C-82

03 - O.OOOOOOE+O0

Bus Variable Name: V SecondTrack_1/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.000000E+00 QI - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: TRACK INITIALIZATION (ALL)

Target Processor Class: TRACKERS
Number of Instantiations: 1
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R = Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - 01 + (02 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run ime Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 L1 - O.OOOOOOE+00
02 = 1.394380E-02 L2 -O.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - 5.785600E+04 LI - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

C-83

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreen I/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = 2.614464E+00 L2 - O.OOOOOOE+00
Q3 = O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 5.519424E+00 L2 = O.OOOOOQE+00
Q3 = O.OOOOOOE+00

***Segment Class Name: INITIALIZATION 4 & 5
Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

""Transfer Functions List:
N - Data Set Size:
R - Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) = 01 + (02 * M) + (03 * M**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrack_Memory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - 9.660000E+05 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

C-84

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+O0 L2 - O.OOOOOOE+O0
Q3 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R = 1.OOOOOOE+00 01 = O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 = O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - 0.000000E+00 L2 - O.OOOOOOE+00
Q3 - 0.000000E+00

***Segment Class Name: TRACK UPDATE JOIN

Target Processor Class: TRACKERS
Number of Instantiations: 2

Segment Class Type: Join

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) - 01 + (02 M) + (03 M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.000000E+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00
Q2 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

C-85

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R = 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 = O.OOOOOOE+00
03 - O.OOOOOOE+00

***Segment Class Name: TRACK UPDATE
Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

****Transfer Functions List:
N - Data Set Size:
R - Data Set Size Reduction Factor:

M=R*N:
F(N) - G(M) - 01 + (02 * M) + (03 * M**2) + (1 +(L2 M))LOG2(M)

C-86

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 Q1 - O.OOOOOE+00 Li - O.OOOOOOE+00
Q2 - 2.026100E-03 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - -2.1000OOE-02 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.000000E+00 01 = 4.352000E+04 Li - O.OOOOOOE+00

Q2 - 3.353560E+02 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - .330000E+01 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

*'Segment Class Name: RADIOMETRIC UPDATE

Target Processor Class: TRACKERS

C-87

Number of Instantiations: 2

Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M=R * N:
F(N) - G(M) = 01 + (Q2 * M) + (03 * M**2) + (L1 +(L2 M))LOG2(M)

Run Time Transfer Function Coeficients:

R = 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00
02 - 2.446200E-03 L2 - O.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R = 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 = O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 Q1 - 3.532800E+04 Li - O.OOOOOOE+00

02 = 3.304000E+02 L2 - O.OOOOOOE+00
03 = O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenl/On
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O

C-88

Bus Variable Class Restriction: TRACK WITH NIOC
R - 1 .OOOOOOE+00 01 - O.OOOOOOE+00 LI - O.OOOOOOE+00

02 - 0.OOOOOOE+00 L2 - O.OOOOOOE+OO
03 - O.OOOOOOE+00

***Segment Class Name: DESIGNATION UPDATE
Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

""*Transfer Functions List:
N - Data Set Size:
R - Data Set Size Reduction Factor:

M -R *N:
F(N) - G(M) - Q1 + (02 *M) + (03 * M**2) + (Li1 +(L2' M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1 .OOOOOOE+00 01 - O.OOOOOOE+0O Li - 0.OOOOOOE+00
Q2 - 1.221200 E-03 L2 - 0.OOOOOOE+00

03 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+00 01 - 0.OOOOOOE+O0 Li - O.OOOOOOE+00

02 - 0.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory 1/0 Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1 .OOOOOOE+O0 01 - 7.680000E+03 Li - O.OOOOOOE+OO

02- 3.304000E+02 L2 - 0.OOOOOOE+0O
03 - OOOOOOE+OO

Bus I/O Requirements Transfer Function Coeficients:

C-89

Bus Variable Name: VScreenl/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 01 - 0.000000E+00 LI - O.OOOOOOE+00

Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC

R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 LI - O.OOOOOOE+00
Q2 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
Q3 - O.OOOOOOE+00

***Segment Class Name: PREDICTION UPDATE

Target Processor Class: TRACKERS
Number of Instantiations: 2
Segment Class Type: Application Code

****Transfer Functions List:

N - Data Set Size:
R - Data Set Size Reduction Factor:

M-R*N:
F(N) - G(M) - 01 + (02 * M) + (03 * i**2) + (L1 +(L2 * M))LOG2(M)

Run Time Transfer Function Coeficients:

R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - O.OOOOOOE+00
02 - 1.459330E-02 L2 - O.OOOOOOE+00

Q3 - O.OOOOOOE+00

Memory Space Requirements Transfer Function Coeficients:

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R - 1.OOOOOOE+00 01 - O.OOOOOOE+00 Li - O.OOOOOOE+00

02 - O.OOOOOOE+00 L2 - O.OOOOOOE+00
03 - O.OOOOOOE+00

Memory I/O Requirements Transfer Function Coeficients:

C-90

, , ! i i I III

Memory Variable Name: VTrackMemory
Memory Variable Class Restriction: TRACK MEMORY
R . 1.OOOOOOE+00 01 - 9.062400E+04 LI - O.OOOOOOE+00

02 - 1.486800E+02 L2 - 0.OOOOOOE+00
Q3 - O.OOOOOOE+00

Bus I/O Requirements Transfer Function Coeficients:

Bus Variable Name: VScreenI/O
Bus Variable Class Restriction: SCREEN WITH TRACK
R - 1.OOOOOOE+00 Q1 - O.OOOOOOE+00 Li - 0.OOOOOOE+00

Q2 - 7.288000E+01 L2 - 0.OOOOOOE+00
03 - 0.OOOOOOE+00

Bus Variable Name: VNIOC_I/O
Bus Variable Class Restriction: TRACK WITH NIOC
R - 1.OOOOOOE+00 01 - 0.OOOOOOE+00 Li - O.OOOOOOE+00

Q2 - 1.475600E+01 L2 - 0.OOOOOOE+00
Q3 = O.OOOOOOE+00

**Thread Table

***Thread Name: THD_12: HO

Target Processor: P12
Target Processor Class: NAVIGATIONAL CONTROLLERS

****Segment List:

Segment Name: Segment 40 Join
Segment Class: HANDOVER JOIN
Segment Type: Join
Predecessor Segment: Segment 42
Predecessor Thread: THD_7: T12

Segment Name: Segment 40
Segment Class: HANDOVER
Segment Type: Application Code

***Thread Name: THD_7: T12

Target Processor: P7
Target Processor Class: TRACKERS

C-91

****Segment List:

Segment Name: Segment 26 Join
Segment Class: TRACK FITTING JOIN
Segment Type: Join
Predecessor Segment: Segment 23

Predecessor Thread: THD_6: CGP2

Segment Name: Segment 26
Segment Class: TRACK FITTING
Segment Type: Application Code

Segment Name: Segment 42
Segment Class: TRACK INITIALIZATION LAG
Segment Type: Application Code

Segment Name: Segment 27
Segment Class: TRACK INITIALIZATION
Segment Type: Application Code

Segment Name: Segment 28
Segment Class: RADIOMETRIC INITIALIZATION
Segment Type: Application Code

Segment Name: Segment 29
Segment Class: DESIGNATION INITIALIZATION
Segment Type: Application Code

Segment Name: Segment 30
Segment Class: PREDICTION INITIALIZATION
Segment Type: Application Code

***Thread Name: THD_5: TI1

Target Processor: P5
Target Processor Class: TRACKERS

****Segment List:

Segment Name: Segment 14 Join
Segment Class: TRACK FITTING JOIN
Segment Type: Join
Predecessor Segment: Segment 11
Predecessor Thread: THD_4: CGP1

C-92

Segment Name: Segment 14
Segment Class: TRACK FITTING
Segment Type: Application Code

Segment Name: Segment 15
Segment Class: TRACK INITIALIZATION (ALL)
Segment Type: Application Code

Segment Name: Segment 16
Segment Class: RADIOMETRIC INITIALIZATION
Segment Type: Application Code

Segment Name: Segment 17
Segment Class: DESIGNATION INITIALIZATION
Segment Type: Application Code

Segment Name: Segment 18
Segment Class: PREDICTION INITIALIZATION
Segment Type: Application Code

***Thread Name: THD_3: ARS/TDM

Target Processor: P3
Target Processor Class: SCREENERS

****Segment List:

Segment Name: Segment 35 Join
Segment Class: ANGULAR RATE SMOOTHING LAG JOIN
Segment Type: Join
Predecessor Segment: Segment 3

Predecessor Thread: THD_2: OSC

Segment Name: Segment 35
Segment Class: ANGULAR RATE SMOOTHING LAG

Segment Type: Application Code

Segment Name: Segment 6
Segment Class: TDM INITIAL INITIATOR LOADING
Segment Type: Application Code

Segment Name: Segment 5
Segment Class: ANGULAR RATE SMOOTHING

C-93

Segment Type: Application Code

Segment Name: Segment 7 Join 1
Segment Class: TDM BUILD CAND TRACK MSG JOIN 1
Segment Type: Join
Predecessor Segment: Segment 23

Predecessor Thread: THD_6: CGP2

Segment Name: Segment 7 Join 2
Segment Class: TDM BUILD CAND TRACK MSG JOIN 2
Segment Type: Join
Predecessor Segment: Segment 11

Predecessor Thread: THD_4: CGP1

Segment Name: Segment 7
Segment Class: TDM BUILD CANDIDATE TRACK MSG

Segment Type: Application Code

Segment Name: Segment 8
Segment Class: TDM REMAINING INITIATOR LOADING
Segment Type: Application Code

Segment Name: Segment 9
Segment Class: TDM TRACK ACCEPT/REJECT MSG HAND

Segment Type: Application Code

Segment Name: Segment 10
Segment Class: PREDICTED WINDOW FILE SORT

Segment Type: Application Code

***Thread Name: THD_6: CGP2

Target Processor: P6
Target Processor Class: TRACKERS

****Segment List:

Segment Name: Segment 23 Join
Segment Class: CGP LAG JOIN
Segment Type: Join
Predecessor Segment: Segment 6
Predecessor Thread: THD_3: ARS/TDM

Segment Name: Segment 23

C-94

I
Segment Class: CANDIDATE GENERATION PROCESS LAG

Segment Type: Application Code

Segment Name: Segment 24
Segment Class: CANDIDATE GENERATION PROCESS

Segment Type: Application Code

Segment Name: Segment 25
Segment Class: CGP TRACK ACCEPT MESSAGE HANDLER

Segment Type: Application Code

***Thread Name: THD_4: CGPI

Target Processor: P4
Target Processor Class: TRACKERS

****Segment List:

Segment Name: Segment 11 Join
Segment Class: CGP LAG JOIN
Segment Type: Join
Predecessor Segment: Segment 6
Predecessor Thread: THD_3: ARS/TDM

Segment Name: Segment 11
Segment Class: CANDIDATE GENERATION PROCESS LAG

Segment Type: Application Code

Segment Name: Segment 12
Segment Class: CANDIDATE GENERATION PROCESS

Segment Type: Application Code

Segment Name: Segment 13
Segment Class: CGP TRACK ACCEPT MESSAGE HANDLER

Segment Type: Application Code

***Thread Name: THD_8: TU1

Target Processor: P8
Target Processor Class: TRACKERS

****Segment List:

Segment Name: Segment 45
Segment Class: INITIALIZATION 4 & 5

C-95

Segment Type: Application Code

Segment Name: Segment 19 Join
Segment Class: TRACK UPDATE JOIN
Segment Type: Join
Predecessor Segment: Segment 3
Predecessor Thread: THD_2: OSC

Segment Name: Segment 19
Segment Class: TRACK UPDATE
Segment Type: Application Code

Segment Name: Segment 20
Segment Class: RADIOMETRIC UPDATE
Segment Type: Application Code

Segment Name: Segment 21
Segment Class: DESIGNATION UPDATE

Segment Type: Application Code

Segment Name: Segment 22
Segment Class: PREDICTION UPDATE
Segment Type: Application Code

***Thread Name: THD_9: TU2
Target Processor: P9
Target Processor Class: TRACKERS

****Segment List:

Segment Name: Segment 46
Segment Class: INITIALIZATION 4 & 5
Segment Type: Application Code

Segment Name: Segment 31 Join
Segment Class: TRACK UPDATE JOIN
Segment Type: Join
Predecessor Segment: Segment 3

Predecessor Thread: THD_2: OSC

Segment Name: Segment 31
Segment Class: TRACK UPDATE
Segment Type: Application Code

C-96

Segment Name: Segment 32
Segment Class: RADIOMETRIC UPDATE

Segment Type: Application Code

Segment Name: Segment 33
Segment Class: DESIGNATION UPDATE

Segment Type: Application Code

Segment Name: Segment 34
Segment Class: PREDICTION UPDATE
Segment Type: Application Code

***Thread Name: THD_2: OSC

Target Processor: P2
Target Processor Class: SCREENERS

****Segment List:

Segment Name: Segment 44
Segment Class: INITIALIZATION 2
Segment Type: Application Code

Segment Name: Segment 3 Join
Segment Class: OBJECT SCREENING LAG JOIN
Segment Type: Join
Predecessor Segment: Segment 1

Predecessor Thread: THD_1: OSO

Segment Name: Segment 3
Segment Class: OBJECT SCREENING LAG

Segment Type: Application Code

Segment Name: Segment 4
Segment Class: OBJECT SCREENING

Segment Type: Application Code

'Thread Name: THD1: OSO
Target Processor: P1
Target Processor Class: SORTERS

****Segment List:

C-97

Segment Name: Segment 1 Join
Segment Class: OBJECT SORTING LAG JOIN
Segment Type: Join
Predecessor Segment: Segment 36
Predecessor Thread: THD_10: MP

Segment Name: Segment 1
Segment Class: OBJECT SORTING LAG

Segment Type: Application Code

Segment Name: Segment 2
Segment Class: OBJECT SORTING

Segment Type: Application Code

***Thread Name: THD_13: RSM

Target Processor: P13
Target Processor Class: NAVIGATIONAL CONTROLLERS

****Segment List:

Segment Name: Segment 41 Join
Segment Class: REFERENCE STAR MATCHING JOIN
Segment Type: Join
Predecessor Segment: Segment 36
Predecessor Thread: THD_10: MP

Segment Name: Segment 41
Segment Class: REFERENCE STAR MATCHING

Segment Type: Application Code

***Thread Name: THD_10: MP

Target Processor: P10
Target Processor Class: SORTERS

*"*Segment List:

Segment Name: Segment 43
Segment Class: INITIALIZATION 1
Segment Type: Application Code

Segment Name: Segment 36 Join
Segment Class: MEASUREMENT PROCESSING LAG JOIN
Segment Type: Join

C-98

Predecessor Segment: Segment 38
Predecessor Thread: THD_11: NAV

Segment Name: Segment 36
Segment Class: MEASUREMENT PROCESSING LAG

Segment Type: Application Code

Segment Name: Segment 37
Segment Class: MEASUREMENT PROCESSING

Segment Type: Application Code

***Thread Name: THD_11: NAV
Target Processor: P11

Target Processor Class: NAVIGAi IONAL CONTROLLERS
****Segment List:

Segment Name: Segment 38
Segment Class: INITIALIZATION 3
Segment Type: Application Code

Segment Name: Segment 39
Segment Class: NAVIGATION UPDATE
Segment Type: Application Code

C-99

APPENDIX D

PROCESSOR 3 EVENT ACTIVITIES

m!

PROCESSOR EVENT ACTIVITIES
Processor Profile for: P3
Event Listing from file : Track.ehf

Processor Ensemble :AOSP Tracking
Author: TBE

Load Duration: 6.20223
Event Listing Start Time: 0
Event Listing End Time : 6.20223

SEGMENT EVENT for JOIN SEGMENT
Time = 0 Duration = 0
Segment: Segment 35 Join of Class: ANGULAR RATE
SMOOTHING LAG JOIN
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY

D-1

MEMORY I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: BI
of Class: SCREEN WITH TRACK

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for JOIN SEGMENT
Time - 0 Duration - 0.00578797
Segment: Segment 35 Join of Class: ANGULAR RATE
SMOOTHING LAG JOIN
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT

D-2

Memory: M2
of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

D-3

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for APPLICATION CODE SEGMENT
Time - 0.00578797 Duration = 0.00029
Segment: Segment 35 of Class: ANGULAR RATE SMOOTHING
LAG
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 4.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 4.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5

Hi l i i I

of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 4.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B31
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for APPLICATION CODE SEGMENT
Time - 0.00607797 Duration - 0.0006
Segment: Segment 6 of Class: TDM INITIAL INITIATOR
LOADING
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 4.000000%

D-5

Utilization after 0.000000%
Memory: M4

of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 4.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 4.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for APPLICATION CODE SEGMENT

D-6

Time - 0.00667797 Duration - 0.005465
Segment: Segment 5 of Class: ANGULAR RATE SMOOTHING
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 34.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 4.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 4.000000%

Bus: B3
of Class: SORT TO SCREEN
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7

D-7

of Class: SCREEN WITH NIOC
BUS I/0

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for JOIN SEGMENT
Time = 0.012143 Duration - 0
Segment: Segment 7 Join I of Class: TDM BUILD CAND TRACK
MSG JOIN 1
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 34.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 4.000000%

D-8

Utilization after 0.000000%
Memory: M5

of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 4.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for JOIN SEGMENT
Time - 0.012143 Duration - 0.242657
Segment: Segment 7 Join 1 of Class: TDM BUILD CAND TRACK
MSG JOIN 1
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY

D-9

MEMORY CAPACITY
Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 34.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 4.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 4.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

D-I0

Bus: B2
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for JOIN SEGMENT
Time - 0.2548 Duration - 0
Segment: Segment 7 Join 2 of Class: TDM BUILD CAND TRACK
MSG JOIN 2
Task: AONAOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

D-11

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for JOIN SEGMENT
Time - 0.2548 Duration = 0
Segment: Segment 7 Join 2 of Class: TDM BUILD CAND TRACK
MSG JOIN 2
Task: AOAIAOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4

D-12

of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for APPLICATION CODE SEGMENT
Time - 0.2548 Duration - 0.001715

D-13

Segment: Segment 7 of Class: TDM BUILD CANDIDATE
TRACK MSG
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 17.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7

I
D-14 I

of Class: SCREEN WITH NIOC
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK

BUS I/O
Utilization prior 0.000000%
Utilization after 6.000000%

Bus: B2
of Class: SCREEN A ITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 6.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for APPLICATION CODE SEGMENT
Time - 0.256515 Duration - 0.00048
Segment: Segment 8 of Class: TDM REMAINING INITIATOR
LOADING
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 17.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%

D-15

Utilization after 0.000000%
Memory: M5

of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 6.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK

BUS I/O
Utilization prior 6.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for APPLICATION CODE SEGMENT
Time - 0.256995 Duration - 0.004405
Segment: Segment 9 of Class: TDM TRACK ACCEPT/REJECT
MSG HAND
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY

D-16

MEMORY CAPACITY
Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 48.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

D-17

Bus: B2
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for APPLICATION CODE SEGMENT
Time - 0.2614 Duration - 0.00045
Segment: Segment 10 of Class: PREDICTED WINDOW FILE
SORT
Task: AOA/AOSP Tracking of Class: AOSP Tracking

Thread: THD_3: ARS/TDM
Processor: P3

of Class: SCREENERS
RESOURCE USE PROFILE AT THE SEGMENT BOUNDARY EVENT
Memory: M2

of Class: SCREEN MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M2
of Class: SCREEN MEMORY
MEMORY I/O

Utilization prior 48.000000%
Utilization after 104.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M4
of Class: TRACK MEMORY
MEMORY I/O

Utilization prior 0.000000%
Utilizathbn after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY CAPACITY

Utilization prior 0.000000%
Utilization after 0.000000%

Memory: M5
of Class: TRACK MEMORY
MEMORY I/O

D-18

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B3
of Class: SORT TO SCREEN

BUS I/O
Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B7
of Class: SCREEN WITH NIOC
BUS i/0

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B1
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

Bus: B2
of Class: SCREEN WITH TRACK
BUS I/O

Utilization prior 0.000000%
Utilization after 0.000000%

TOTAL TIME PERCENT
SEGMENT EVENT for BUS BANDWIDTH
Time - 0.26185 Duration - 0.00045

D-19

